1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
// SPDX-License-Identifier: CC0-1.0
//! # Merkle roots
//!
//! Tools for creating Merkle roots.
//! There exist different Merkle roots for commitment and for redemption.
pub mod amr;
pub mod cmr;
pub mod imr;
pub mod tmr;
use crate::Value;
use hashes::{sha256, Hash, HashEngine};
use std::fmt;
/// 512-bit opaque blob of data used to seed `Fail` nodes
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
pub struct FailEntropy([u8; 64]);
impl FailEntropy {
/// The all-zeroes entropy
pub const ZERO: Self = FailEntropy([0; 64]);
/// Construct a [`FailEntropy`] from raw data
pub fn from_byte_array(data: [u8; 64]) -> Self {
FailEntropy(data)
}
}
impl fmt::Display for FailEntropy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&hex::DisplayHex::as_hex(&self.0), f)
}
}
impl AsRef<[u8]> for FailEntropy {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
/// Helper function to compute the "compact value", i.e. the sha256 hash
/// of the bits of a given value, which is used in some IMRs and AMRs.
fn compact_value(value: &Value) -> [u8; 32] {
let (mut bytes, bit_length) = value.to_bytes_len();
// TODO: Automate hashing once `hashes` supports bit-wise hashing
// 1.1 Append single '1' bit
if bit_length % 8 == 0 {
bytes.push(0x80);
} else {
let delimiter_index = bit_length % 8;
*bytes.last_mut().unwrap() |= 1 << (7 - delimiter_index);
}
// 1.2 Append k '0x00' bytes, where k is minimum number >= 0 such that bytes.len() + k + 8 is multiple of 64
let k = if bytes.len() % 64 > 56 {
// Not enough space for 64-bit integer
// Pad with zeroes until next block is 64 bits short of completion
56 + (64 - (bytes.len() % 64))
} else {
// Pad with zeroes until current block is 64 bits short of completion
56 - (bytes.len() % 64)
};
bytes.resize(bytes.len() + k, 0x00);
debug_assert!(bytes.len() % 64 == 56);
// 1.3 Append bit_length as 64-bit bit-endian integer
let bit_length_bytes = (bit_length as u64).to_be_bytes();
bytes.extend(bit_length_bytes.iter());
debug_assert!(bytes.len() % 16 == 0);
// 1.4 Compute hash of `value` normally since bytes.len() is multiple of 64
let mut consumed = 0;
let mut engine = sha256::HashEngine::default();
while consumed < bytes.len() {
engine.input(&bytes[consumed..(consumed + 16)]);
consumed += 16;
}
debug_assert!(consumed == bytes.len());
engine.midstate().to_byte_array()
}
fn bip340_iv(tag: &[u8]) -> sha256::Midstate {
let tag_hash = sha256::Hash::hash(tag);
let mut engine = sha256::Hash::engine();
engine.input(tag_hash.as_ref());
engine.input(tag_hash.as_ref());
engine.midstate()
}
/// Convenience macro for wrappers of `Midstate`.
///
/// Implements `From` to and from `[u8; 32]`,
/// `MerkleRoot`, `AsRef<[u8]>`, `Debug` and `Display`
#[macro_export]
macro_rules! impl_midstate_wrapper {
($wrapper:ident) => {
impl AsRef<[u8]> for $wrapper {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl std::fmt::Debug for $wrapper {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Display::fmt(&hex::DisplayHex::as_hex(self.as_ref()), f)
}
}
impl std::fmt::Display for $wrapper {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Debug::fmt(self, f)
}
}
impl std::str::FromStr for $wrapper {
type Err = hashes::hex::HexToArrayError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let x: [u8; 32] = hashes::hex::FromHex::from_hex(s)?;
Ok($wrapper(Midstate::from_byte_array(x)))
}
}
impl $wrapper {
/// Extend the given tagged hash by the given `left` and `right` hashes.
///
/// The hash `self` is taken as initial value,
/// `left` and `right` hash are combined to create a 512-bit block,
/// and the compression function is run once
pub fn update(self, left: Self, right: Self) -> Self {
use $crate::hashes::{sha256, HashEngine};
let mut engine = sha256::HashEngine::from_midstate(self.0, 0);
engine.input(left.as_ref());
engine.input(right.as_ref());
$wrapper(engine.midstate())
}
/// Extend the given tagged hash by 256 bits of zeroes and the `right` hash.
///
/// The hash `self` is taken as initial value,
/// 256 bits of zeroes and `right` hash are combined to create a 512-bit block,
/// and the compression function is run once
pub fn update_1(self, right: Self) -> Self {
use $crate::hashes::{sha256, HashEngine};
let mut engine = sha256::HashEngine::from_midstate(self.0, 0);
engine.input(&[0; 32]);
engine.input(&right.as_ref());
$wrapper(engine.midstate())
}
/// Updates the given tagged hash with given `left` cost and `right` hash.
///
/// The cost is serialized as the last 64 bits in the left block
pub fn update_with_weight(self, left_weight: u64, right: Self) -> Self {
use $crate::hashes::{sha256, HashEngine};
let mut engine = sha256::HashEngine::from_midstate(self.0, 0);
let mut left_blk = [0; 32];
left_blk[24..].copy_from_slice(&left_weight.to_be_bytes());
engine.input(&left_blk);
engine.input(right.as_ref());
$wrapper(engine.midstate())
}
pub fn update_fail_entropy(self, entropy: $crate::FailEntropy) -> Self {
use $crate::hashes::{sha256, HashEngine};
let mut engine = sha256::HashEngine::from_midstate(self.0, 0);
engine.input(entropy.as_ref());
$wrapper(engine.midstate())
}
/// Converts the given tagged hash into a byte array
pub fn from_byte_array(data: [u8; 32]) -> Self {
$wrapper(Midstate::from_byte_array(data))
}
/// Converts the given tagged hash into a byte array
pub fn to_byte_array(self) -> [u8; 32] {
self.0.to_byte_array()
}
}
impl_serde_string!($wrapper);
};
}