1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
// SPDX-License-Identifier: CC0-1.0

//! General DAG iteration utilities

use std::collections::{hash_map::Entry, HashMap};
use std::fmt;
use std::sync::Arc;

use crate::node::{self, Disconnectable, Node};

/// Abstract node of a directed acyclic graph.
///
/// Tracks the arity (out-degree) of nodes in a Simplictiy program, as well
/// as whether they represent `witness` or `disconnect` combinators, which
/// are treated specially when working with the graph structure of
/// Simplicty programs.
pub enum Dag<T> {
    /// Combinator with no children
    Nullary,
    /// Combinator with one child
    Unary(T),
    /// Combinator with two children
    Binary(T, T),
}

impl<T> Dag<T> {
    /// Given a DAG of one type, convert it to a DAG of another type.
    pub fn map<U, F: FnMut(T) -> U>(self, mut f: F) -> Dag<U> {
        match self {
            Dag::Nullary => Dag::Nullary,
            Dag::Unary(t) => Dag::Unary(f(t)),
            Dag::Binary(tl, tr) => Dag::Binary(f(tl), f(tr)),
        }
    }
}

/// How much sharing/expansion to do when running an iterator over a DAG
///
/// This object works by recording and looking up nodes in a DAG as they are
/// being iterated over. If the tracker says that an element has been seen
/// before, it will not be yielded again; so for example, a tracker which
/// records nodes by their IMR will implement full sharing, while a tracker
/// which claims to have never seen any node before will implement no
/// sharing at all.
pub trait SharingTracker<D: DagLike> {
    /// Marks an object as having been seen, and record the index
    /// when it was seen.
    ///
    /// If the object was already seen, does **not** update the index,
    /// and instead returns the original one.
    fn record(&mut self, object: &D, index: usize) -> Option<usize>;

    /// Check whether an object has been seen before; if so, return
    /// the index it was recorded at.
    fn seen_before(&self, object: &D) -> Option<usize>;
}

// Annoyingly we need to implement this explicitly
impl<D: DagLike> SharingTracker<D> for &mut dyn SharingTracker<D> {
    fn record(&mut self, object: &D, index: usize) -> Option<usize> {
        (**self).record(object, index)
    }
    fn seen_before(&self, object: &D) -> Option<usize> {
        (**self).seen_before(object)
    }
}

/// Do not share at all; yield every node in the expanded DAG
#[derive(Clone, Debug, Default)]
pub struct NoSharing;

impl<D: DagLike> SharingTracker<D> for NoSharing {
    fn record(&mut self, _: &D, _: usize) -> Option<usize> {
        None
    }
    fn seen_before(&self, _: &D) -> Option<usize> {
        None
    }
}

/// Share using pointer identity, i.e. yield each node only once, where two
/// nodes are the same iff they both point to the same object.
#[derive(Clone, Debug, Default)]
pub struct InternalSharing {
    map: HashMap<PointerId, usize>,
}

impl<D: DagLike> SharingTracker<D> for InternalSharing {
    fn record(&mut self, d: &D, index: usize) -> Option<usize> {
        match self.map.entry(PointerId::from(d)) {
            Entry::Occupied(occ) => Some(*occ.get()),
            Entry::Vacant(vac) => {
                vac.insert(index);
                None
            }
        }
    }
    fn seen_before(&self, d: &D) -> Option<usize> {
        self.map.get(&PointerId::from(d)).copied()
    }
}

/// Maximal sharing: share every node whose CMR and cached data match
///
/// For `RedeemNode`s, this coincides with `FullSharing`; for other
/// types of nodes it represents "as much sharing as we can currently
/// safely do".
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MaxSharing<N: node::Marker> {
    map: HashMap<N::SharingId, usize>,
}

// Annoyingly we have to implement Default by hand
impl<N: node::Marker> Default for MaxSharing<N> {
    fn default() -> Self {
        MaxSharing {
            map: HashMap::default(),
        }
    }
}

impl<N: node::Marker> SharingTracker<&Node<N>> for MaxSharing<N> {
    fn record(&mut self, d: &&Node<N>, index: usize) -> Option<usize> {
        let id = d.sharing_id()?;

        match self.map.entry(id) {
            Entry::Occupied(occ) => Some(*occ.get()),
            Entry::Vacant(vac) => {
                vac.insert(index);
                None
            }
        }
    }
    fn seen_before(&self, d: &&Node<N>) -> Option<usize> {
        d.sharing_id().and_then(|id| self.map.get(&id)).copied()
    }
}

impl<N: node::Marker> SharingTracker<Arc<Node<N>>> for MaxSharing<N> {
    fn record(&mut self, d: &Arc<Node<N>>, index: usize) -> Option<usize> {
        let id = d.sharing_id()?;

        match self.map.entry(id) {
            Entry::Occupied(occ) => Some(*occ.get()),
            Entry::Vacant(vac) => {
                vac.insert(index);
                None
            }
        }
    }
    fn seen_before(&self, d: &Arc<Node<N>>) -> Option<usize> {
        d.sharing_id().and_then(|id| self.map.get(&id)).copied()
    }
}

// Need to explicitly allow swapping children for `MaxSharing`; the other
// sharing styles have blanket implementations for `D: DagLike` so they
// automatically allow it.
impl<N, D> SharingTracker<SwapChildren<D>> for MaxSharing<N>
where
    D: DagLike,
    MaxSharing<N>: SharingTracker<D>,
    N: node::Marker,
{
    fn record(&mut self, d: &SwapChildren<D>, index: usize) -> Option<usize> {
        self.record(&d.0, index)
    }

    fn seen_before(&self, d: &SwapChildren<D>) -> Option<usize> {
        self.seen_before(&d.0)
    }
}

/// Object representing pointer identity of a DAG node
///
/// Used to populate a hashset to determine whether or not a given node has
/// already been tracker by an iterator.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
struct PointerId(usize);

impl<D: DagLike> From<&D> for PointerId {
    fn from(dag: &D) -> Self {
        PointerId(dag.data() as *const _ as usize)
    }
}

/// Return type of the [`DagLike::rtl_post_order_iter`] method.
pub type RtlPostOrderIter<D, S> = std::iter::Map<
    PostOrderIter<SwapChildren<D>, S>,
    fn(PostOrderIterItem<SwapChildren<D>>) -> PostOrderIterItem<D>,
>;

/// A trait for any structure which has the shape of a Simplicity DAG
///
/// This should be implemented on any reference type for `Node`, though it
/// cannot be implemented on the actual structure because it assumes that
/// the node type is the same as the type contained in each variant.
pub trait DagLike: Sized {
    /// The type of the DAG node, with no references or wrappers
    type Node;

    /// A pointer to the underlying data
    fn data(&self) -> &Self::Node;

    /// Interpret the node as a DAG node
    fn as_dag_node(&self) -> Dag<Self>;

    /// Accessor for the left child of the node, if one exists
    fn left_child(&self) -> Option<Self> {
        match self.as_dag_node() {
            Dag::Nullary => None,
            Dag::Unary(sub) => Some(sub),
            Dag::Binary(left, _) => Some(left),
        }
    }

    /// Accessor for the right child of the node, if one exists
    fn right_child(&self) -> Option<Self> {
        match self.as_dag_node() {
            Dag::Nullary => None,
            Dag::Unary(_) => None,
            Dag::Binary(_, right) => Some(right),
        }
    }

    /// Number of children that the node has.
    ///
    /// This has a default implementation which simply inspects the children, but
    /// in some cases it may be more efficient for implementors to implement this
    /// manually.
    fn n_children(&self) -> usize {
        match self.as_dag_node() {
            Dag::Nullary => 0,
            Dag::Unary(..) => 1,
            Dag::Binary(..) => 2,
        }
    }

    /// Obtains an iterator of all the nodes rooted at the DAG, in right-to-left post order.
    ///
    /// An ordinary post-order iterator yields children in the order
    /// left-child, right-child, node. This one instead yields them in
    /// the order right-child, left-child, node.
    ///
    /// This is useful when implementing satisfiers, specifically for
    /// handling the `comp` combinator, by allowing the user to see the
    /// right child (and e.g. make decisions about what branches to prune
    /// or what witnesses to provide) before the left child (which may
    /// involve populating witnesses consistent with that choice).
    fn rtl_post_order_iter<S: SharingTracker<SwapChildren<Self>> + Default>(
        self,
    ) -> RtlPostOrderIter<Self, S> {
        PostOrderIter {
            index: 0,
            stack: vec![IterStackItem::unprocessed(
                SwapChildren(self),
                Previous::Root,
            )],
            tracker: Default::default(),
        }
        .map(PostOrderIterItem::unswap)
    }

    /// Obtains an iterator of all the nodes rooted at the DAG, in pre-order.
    fn pre_order_iter<S: SharingTracker<Self> + Default>(self) -> PreOrderIter<Self, S> {
        PreOrderIter {
            stack: vec![self],
            tracker: Default::default(),
        }
    }

    /// Obtains a verbose iterator of all the nodes rooted at the DAG, in pre-order.
    ///
    /// See the documentation of [`VerbosePreOrderIter`] for more information about what
    /// this does. Essentially, if you find yourself using [`Self::pre_order_iter`] and
    /// then adding a stack to manually track which items and their children have been
    /// yielded, you may be better off using this iterator instead.
    fn verbose_pre_order_iter<S: SharingTracker<Self> + Default>(
        self,
    ) -> VerbosePreOrderIter<Self, S>
    where
        Self: Clone,
    {
        VerbosePreOrderIter {
            stack: vec![PreOrderIterItem::initial(self, None)],
            index: 0,
            tracker: Default::default(),
        }
    }

    /// Obtains an iterator of all the nodes rooted at the DAG, in post order.
    ///
    /// Each node is only yielded once, at the leftmost position that it
    /// appears in the DAG.
    fn post_order_iter<S: SharingTracker<Self> + Default>(self) -> PostOrderIter<Self, S> {
        PostOrderIter {
            index: 0,
            stack: vec![IterStackItem::unprocessed(self, Previous::Root)],
            tracker: Default::default(),
        }
    }

    /// Checks whether a DAG's internal sharing (as expressed by shared pointers)
    /// matches the given target sharing.
    #[allow(clippy::wrong_self_convention)] // clippy doesn't like is_* taking a pointer by value
    fn is_shared_as<S: SharingTracker<Self> + Default>(self) -> bool
    where
        Self: Clone,
    {
        let iter_is = self.clone().post_order_iter::<InternalSharing>();
        let iter_ought = self.post_order_iter::<S>();
        for (data_is, data_ought) in iter_is.zip(iter_ought) {
            if PointerId::from(&data_is.node) != PointerId::from(&data_ought.node) {
                return false;
            }
        }
        true
    }

    /// Obtains an post-order iterator of all the nodes rooted at DAG, using the
    /// given tracker.
    ///
    /// Ordinary users will never need to use this method; but it is available to
    /// enable obscure iteration use-cases.
    fn post_order_iter_with_tracker<S: SharingTracker<Self>>(
        self,
        tracker: S,
    ) -> PostOrderIter<Self, S> {
        PostOrderIter {
            index: 0,
            stack: vec![IterStackItem::unprocessed(self, Previous::Root)],
            tracker,
        }
    }
}

/// A wrapper around a DAG-like reference that swaps the two children
///
/// This can be useful to modify the `PostOrderIter` behaviour to yield
/// right children before left children.
///
/// Since it works by relabelling the children, when iterating with this
/// adaptor, the "left" and "right" child indices will be inconsistent
/// with the returned nodes. To correct this, you need to call
/// [`PostOrderIterItem::unswap`].
///
/// To avoid confusion, this structure cannot be directly costructed.
/// Instead it is implicit in the [`DagLike::rtl_post_order_iter`]
/// method.
pub struct SwapChildren<D>(D);

impl<D: DagLike> DagLike for SwapChildren<D> {
    type Node = D::Node;

    fn data(&self) -> &Self::Node {
        self.0.data()
    }

    fn as_dag_node(&self) -> Dag<Self> {
        match self.0.as_dag_node() {
            Dag::Nullary => Dag::Nullary,
            Dag::Unary(sub) => Dag::Unary(SwapChildren(sub)),
            Dag::Binary(left, right) => Dag::Binary(SwapChildren(right), SwapChildren(left)),
        }
    }
}

impl<'a, N: node::Marker> DagLike for &'a Node<N> {
    type Node = Node<N>;

    fn data(&self) -> &Node<N> {
        self
    }

    #[rustfmt::skip]
    fn as_dag_node(&self) -> Dag<Self> {
        match self.inner() {
            node::Inner::Iden
            | node::Inner::Unit
            | node::Inner::Fail(..)
            | node::Inner::Jet(..)
            | node::Inner::Word(..) => Dag::Nullary,
            node::Inner::InjL(ref sub)
            | node::Inner::InjR(ref sub)
            | node::Inner::Take(ref sub)
            | node::Inner::Drop(ref sub)
            | node::Inner::AssertL(ref sub, _)
            | node::Inner::AssertR(_, ref sub) => Dag::Unary(sub),
            node::Inner::Comp(ref left, ref right)
            | node::Inner::Case(ref left, ref right)
            | node::Inner::Pair(ref left, ref right) => Dag::Binary(left, right),
            node::Inner::Disconnect(ref left, ref right) => right.disconnect_dag_ref(left),
            node::Inner::Witness(..) => Dag::Nullary,
        }
    }
}

impl<N: node::Marker> DagLike for Arc<Node<N>> {
    type Node = Node<N>;

    fn data(&self) -> &Node<N> {
        self
    }

    #[rustfmt::skip]
    fn as_dag_node(&self) -> Dag<Self> {
        match self.inner() {
            node::Inner::Iden
            | node::Inner::Unit
            | node::Inner::Fail(..)
            | node::Inner::Jet(..)
            | node::Inner::Word(..) => Dag::Nullary,
            node::Inner::InjL(ref sub)
            | node::Inner::InjR(ref sub)
            | node::Inner::Take(ref sub)
            | node::Inner::Drop(ref sub)
            | node::Inner::AssertL(ref sub, _)
            | node::Inner::AssertR(_, ref sub) => Dag::Unary(Arc::clone(sub)),
            node::Inner::Comp(ref left, ref right)
            | node::Inner::Case(ref left, ref right)
            | node::Inner::Pair(ref left, ref right) => Dag::Binary(Arc::clone(left), Arc::clone(right)),
            node::Inner::Disconnect(ref left, ref right) => right.clone().disconnect_dag_arc(Arc::clone(left)),
            node::Inner::Witness(..) => Dag::Nullary,
        }
    }
}

enum Child<D: DagLike> {
    None,
    Repeat { idx: usize },
    New(D),
}

#[derive(Clone, Debug)]
enum Previous {
    /// This is the root element and there are no previous elements
    Root,
    /// This is a left child and the previous element is its parent
    ParentLeft,
    /// This is a left child and the previous element is its sibling
    SiblingLeft,
    /// This is a right child and the previous element is its parent
    ParentRight,
}

#[derive(Clone, Debug)]
struct IterStackItem<D> {
    /// The element on the stack
    elem: D,
    /// Whether we have dealt with this item (and pushed its children,
    /// if any) yet.
    processed: bool,
    /// If the item has been processed, the index of its left child, if known
    left_idx: Option<usize>,
    /// If the item has been processed, the index of its right child, if known
    right_idx: Option<usize>,
    /// Whether the element is a left- or right-child of its parent
    previous: Previous,
}

impl<D: DagLike> IterStackItem<D> {
    /// Constructor for a new stack item with a given element and relationship
    /// to its parent.
    fn unprocessed(elem: D, previous: Previous) -> Self {
        IterStackItem {
            elem,
            processed: false,
            left_idx: None,
            right_idx: None,
            previous,
        }
    }

    fn left_child<V: SharingTracker<D>>(&self, tracker: &V) -> Child<D> {
        match self.elem.left_child() {
            Some(child) => match tracker.seen_before(&child) {
                Some(idx) => Child::Repeat { idx },
                None => Child::New(child),
            },
            None => Child::None,
        }
    }

    fn right_child<V: SharingTracker<D>>(&self, tracker: &V) -> Child<D> {
        match self.elem.right_child() {
            Some(child) => match tracker.seen_before(&child) {
                Some(idx) => Child::Repeat { idx },
                None => Child::New(child),
            },
            None => Child::None,
        }
    }
}

/// Iterates over a DAG in _post order_.
///
/// That means nodes are yielded in the order (left child, right child, parent).
/// Nodes may be repeated or not, based on the `S` parameter which defines how
/// the iterator treats sharing.
#[derive(Clone, Debug)]
pub struct PostOrderIter<D, S> {
    /// The index of the next item to be yielded
    index: usize,
    /// A stack of elements to be yielded; each element is a node, then its left
    /// and right children (if they exist and if they have been yielded already)
    stack: Vec<IterStackItem<D>>,
    /// Data which tracks which nodes have been yielded already and therefore
    /// should be skipped.
    tracker: S,
}

/// A set of data yielded by a `PostOrderIter`
pub struct PostOrderIterItem<D> {
    /// The actual node data
    pub node: D,
    /// The index of this node (equivalent to if you'd called `.enumerate()` on
    /// the iterator)
    pub index: usize,
    /// The index of this node's left child, if it has a left child
    pub left_index: Option<usize>,
    /// The index of this node's right child, if it has a left child
    pub right_index: Option<usize>,
}

impl<D: DagLike> PostOrderIterItem<SwapChildren<D>> {
    /// When iterating in right-to-left mode using the [`SwapChildren`] adaptor,
    /// use this method to correct the child indices. See documentation on
    /// [`SwapChildren`] or [`DagLike::rtl_post_order_iter`].
    fn unswap(mut self) -> PostOrderIterItem<D> {
        if matches!(self.node.as_dag_node(), Dag::Binary(..)) {
            std::mem::swap(&mut self.left_index, &mut self.right_index);
        }
        PostOrderIterItem {
            node: self.node.0,
            index: self.index,
            left_index: self.left_index,
            right_index: self.right_index,
        }
    }
}

impl<D: DagLike, S: SharingTracker<D>> Iterator for PostOrderIter<D, S> {
    type Item = PostOrderIterItem<D>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            // Look at the current top item on the stack
            if let Some(mut current) = self.stack.pop() {
                if !current.processed {
                    current.processed = true;
                    // When we first encounter an item, it is completely unknown; it is
                    // nominally the next item to be yielded, but it might have children,
                    // and if so, they come first
                    match (
                        current.left_child(&self.tracker),
                        current.right_child(&self.tracker),
                    ) {
                        // No children is easy, just mark it processed and iterate.
                        // (We match _ for the right child but we know that if the left one
                        // is Child::None, then the right one will be Child::None as well.)
                        (Child::None, _) => {
                            self.stack.push(current);
                        }
                        // Only a left child, already yielded
                        (Child::Repeat { idx }, Child::None) => {
                            current.left_idx = Some(idx);
                            self.stack.push(current);
                        }
                        // Only a left child, new
                        (Child::New(child), Child::None) => {
                            self.stack.push(current);
                            self.stack
                                .push(IterStackItem::unprocessed(child, Previous::ParentLeft));
                        }
                        // Two children, both already yielded
                        (Child::Repeat { idx: lidx }, Child::Repeat { idx: ridx }) => {
                            current.left_idx = Some(lidx);
                            current.right_idx = Some(ridx);
                            self.stack.push(current);
                        }
                        // Two children, one yielded already
                        (Child::New(child), Child::Repeat { idx }) => {
                            current.right_idx = Some(idx);
                            self.stack.push(current);
                            self.stack
                                .push(IterStackItem::unprocessed(child, Previous::ParentLeft));
                        }
                        (Child::Repeat { idx }, Child::New(child)) => {
                            current.left_idx = Some(idx);
                            self.stack.push(current);
                            self.stack
                                .push(IterStackItem::unprocessed(child, Previous::ParentRight));
                        }
                        // Two children, neither yielded already
                        (Child::New(lchild), Child::New(rchild)) => {
                            self.stack.push(current);
                            self.stack
                                .push(IterStackItem::unprocessed(rchild, Previous::ParentRight));
                            self.stack
                                .push(IterStackItem::unprocessed(lchild, Previous::SiblingLeft));
                        }
                    }
                } else {
                    // The second time we encounter an item, we have dealt with its children,
                    // updated the child indices for this item, and are now ready to yield it
                    // rather than putting it back in the stack. However, while dealing with
                    // its children, we may have already yielded it (which can happen because
                    // this is a DAG, not a tree). In this case we want to skip it.
                    //
                    // Check whether this is the case, and record the item's new index if not.
                    let current_index = self.tracker.record(&current.elem, self.index);
                    let already_yielded = current_index.is_some();
                    let current_index = current_index.unwrap_or(self.index);

                    // Then, update the item's parents and/or sibling, to make sure that its
                    // parent has the correct child index. We need to do this whether or not
                    // we're going to skip the element.
                    let stack_len = self.stack.len();
                    match current.previous {
                        Previous::Root => {
                            assert_eq!(stack_len, 0);
                        }
                        Previous::ParentLeft => {
                            assert!(self.stack[stack_len - 1].processed);
                            self.stack[stack_len - 1].left_idx = Some(current_index);
                        }
                        Previous::ParentRight => {
                            assert!(self.stack[stack_len - 1].processed);
                            self.stack[stack_len - 1].right_idx = Some(current_index);
                        }
                        Previous::SiblingLeft => {
                            assert!(self.stack[stack_len - 2].processed);
                            self.stack[stack_len - 2].left_idx = Some(current_index);
                        }
                    }
                    // Having updated the parent indices, so that our iterator is in a
                    // consistent state, we can safely skip here if the current item is
                    // already yielded.
                    if already_yielded {
                        continue;
                    }

                    self.index += 1;
                    return Some(PostOrderIterItem {
                        node: current.elem,
                        index: current_index,
                        left_index: current.left_idx,
                        right_index: current.right_idx,
                    });
                }
            } else {
                // If there is nothing on the stack we are done.
                return None;
            }
        }
    }
}

impl<'a, N: node::Marker, S: SharingTracker<&'a Node<N>> + Clone> PostOrderIter<&'a Node<N>, S> {
    /// Adapt the iterator to only yield witnesses
    ///
    /// The witnesses are yielded in the order in which they appear in the DAG
    /// *except* that each witness is only yielded once, and future occurences
    /// are skipped.
    pub fn into_witnesses(self) -> impl Iterator<Item = &'a N::Witness> + Clone {
        self.filter_map(|data| {
            if let node::Inner::Witness(value) = data.node.inner() {
                Some(value)
            } else {
                None
            }
        })
    }
}

impl<D: DagLike, S: SharingTracker<D>> PostOrderIter<D, S> {
    /// Display the DAG as an indexed list in post order.
    ///
    /// `display_body()` formats the node body in front of the node indices.
    /// `display_aux()` formats auxiliary items after the node indices.
    pub fn into_display<F, G>(
        self,
        f: &mut fmt::Formatter<'_>,
        mut display_body: F,
        mut display_aux: G,
    ) -> fmt::Result
    where
        F: FnMut(&D, &mut fmt::Formatter<'_>) -> fmt::Result,
        G: FnMut(&D, &mut fmt::Formatter<'_>) -> fmt::Result,
    {
        for data in self {
            write!(f, "{}: ", data.index)?;
            display_body(&data.node, f)?;

            if let Some(i_abs) = data.left_index {
                if let Some(j_abs) = data.right_index {
                    write!(f, "({}, {})", i_abs, j_abs)?;
                } else {
                    write!(f, "({})", i_abs)?;
                }
            }
            display_aux(&data.node, f)?;
            f.write_str("\n")?;
        }
        Ok(())
    }
}

/// Iterates over a DAG in _pre order_.
///
/// Unlike the post-order iterator, this one does not keep track of indices
/// (this would be impractical since when we yield a node we have not yet
/// yielded its children, so we cannot know their indices). If you do need
/// the indices for some reason, the best strategy may be to run the
/// post-order iterator, collect into a vector, then iterate through that
/// backward.
#[derive(Clone, Debug)]
pub struct PreOrderIter<D, S> {
    /// A stack of elements to be yielded. As items are yielded, their right
    /// children are put onto the stack followed by their left, so that the
    /// appropriate one will be yielded on the next iteration.
    stack: Vec<D>,
    /// Data which tracks which nodes have been yielded already and therefore
    /// should be skipped.
    tracker: S,
}

impl<D: DagLike, S: SharingTracker<D>> Iterator for PreOrderIter<D, S> {
    type Item = D;

    fn next(&mut self) -> Option<Self::Item> {
        // This algorithm is _significantly_ simpler than the post-order one,
        // mainly because we don't care about child indices.
        while let Some(top) = self.stack.pop() {
            // Only yield if this is the first time we have seen this node.
            if self.tracker.record(&top, 0).is_none() {
                // If so, mark its children as to-yield, then yield it.
                if let Some(child) = top.right_child() {
                    self.stack.push(child);
                }
                if let Some(child) = top.left_child() {
                    self.stack.push(child);
                }
                return Some(top);
            }
        }
        None
    }
}

/// Iterates over a DAG in "verbose pre order", yielding extra state changes.
///
/// This yields nodes followed by their children, followed by the node *again*
/// after each child. This means that each node will be yielded a total of
/// (n+1) times, where n is its number of children.
///
/// The different times that a node is yielded can be distinguished by looking
/// at the [`PreOrderIterItem::n_children_yielded`]  (which, in particular,
/// will be 0 on the first yield) and [`PreOrderIterItem::is_complete`] (which
/// will be true on the last yield) fields of the yielded item.
///
/// If you use this iterator with a non-trivial sharing tracker, then any
/// items which have been initially yielded before will not be initially
/// yielded again.
///
/// If node's *children* have been initially yielded before, they will be
/// skipped, but the node itself will still be re-yielded as many times
/// as it has children.
#[derive(Clone, Debug)]
pub struct VerbosePreOrderIter<D, S> {
    /// A stack of elements to be yielded. As items are yielded, their right
    /// children are put onto the stack followed by their left, so that the
    /// appropriate one will be yielded on the next iteration.
    stack: Vec<PreOrderIterItem<D>>,
    /// The index of the next item to be yielded.
    ///
    /// Note that unlike the [`PostOrderIter`], this value is not monotonic
    /// and not equivalent to just using `enumerate` on the iterator, because
    /// elements may be yielded multiple times.
    index: usize,
    /// Data which tracks which nodes have been yielded already and therefore
    /// should be skipped.
    tracker: S,
}

impl<D: DagLike + Clone, S: SharingTracker<D>> Iterator for VerbosePreOrderIter<D, S> {
    type Item = PreOrderIterItem<D>;

    fn next(&mut self) -> Option<Self::Item> {
        // This algorithm is still simpler than the post-order one, because while
        // we care about node indices, we don't care about their childrens' indices.
        while let Some(mut top) = self.stack.pop() {
            // If this is the *first* time we'd be yielding this element, act
            // like the non-verbose pre-order iterator.
            if top.n_children_yielded == 0 {
                // If we've seen the node before, skip it.
                if self.tracker.record(&top.node, 0).is_some() {
                    continue;
                }
                // Set its index.
                top.index = self.index;
                self.index += 1;
            }
            // Push the next child.
            match (top.n_children_yielded, top.node.n_children()) {
                (0, 0) => {}
                (0, n) => {
                    self.stack.push(top.clone().increment(n == 1));
                    let child = top.node.left_child().unwrap();
                    self.stack
                        .push(PreOrderIterItem::initial(child, Some(top.node.clone())));
                }
                (1, 0) => unreachable!(),
                (1, 1) => {}
                (1, _) => {
                    self.stack.push(top.clone().increment(true));
                    let child = top.node.right_child().unwrap();
                    self.stack
                        .push(PreOrderIterItem::initial(child, Some(top.node.clone())));
                }
                (_, _) => {}
            }
            // Then yield the element.
            return Some(top);
        }
        None
    }
}

/// A set of data yielded by a [`VerbosePreOrderIter`].
#[derive(Clone, Debug)]
pub struct PreOrderIterItem<D> {
    /// The actual element being yielded.
    pub node: D,
    /// The parent of this node. `None` for the initial node, but will be
    /// populated for all other nodes.
    pub parent: Option<D>,
    /// The index when the element was first yielded.
    pub index: usize,
    /// How many of this item's children have been yielded.
    ///
    /// This can also be interpreted as a count of how many times this
    /// item has been yielded before.
    pub n_children_yielded: usize,
    /// Whether this item is done (will not be yielded again).
    pub is_complete: bool,
}

impl<D: DagLike + Clone> PreOrderIterItem<D> {
    /// Creates a `PreOrderIterItem` which yields a given element for the first time.
    ///
    /// Marks the index as 0. The index must be manually set before yielding.
    fn initial(d: D, parent: Option<D>) -> Self {
        PreOrderIterItem {
            is_complete: matches!(d.as_dag_node(), Dag::Nullary),
            node: d,
            parent,
            index: 0,
            n_children_yielded: 0,
        }
    }

    /// Creates a `PreOrderIterItem` which yields a given element again.
    fn increment(self, is_complete: bool) -> Self {
        PreOrderIterItem {
            node: self.node,
            index: self.index,
            parent: self.parent,
            n_children_yielded: self.n_children_yielded + 1,
            is_complete,
        }
    }
}