1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// SPDX-License-Identifier: CC0-1.0

//! # Encoding
//!
//! Functionality to encode Simplicity programs.
//! These programs are encoded bitwise rather than bytewise,
//! so given a hex dump of a program it is not generally possible
//! to read it visually the way you can with Bitcoin Script.

use crate::dag::{Dag, DagLike, PostOrderIterItem, SharingTracker};
use crate::jet::Jet;
use crate::node::{self, Disconnectable};
use crate::{BitWriter, Cmr, Value};

use std::collections::{hash_map::Entry, HashMap};
use std::sync::Arc;
use std::{hash, io, mem};

#[derive(Copy, Clone)]
enum EncodeNode<'n, N: node::Marker> {
    Node(&'n node::Node<N>),
    Hidden(Cmr),
}

impl<'n, N: node::Marker> Disconnectable<EncodeNode<'n, N>> for EncodeNode<'n, N> {
    fn disconnect_dag_arc(self, other: Arc<EncodeNode<'n, N>>) -> Dag<Arc<EncodeNode<'n, N>>> {
        Dag::Binary(other, Arc::new(self))
    }

    fn disconnect_dag_ref<'s>(
        &'s self,
        other: &'s EncodeNode<'n, N>,
    ) -> Dag<&'s EncodeNode<'n, N>> {
        Dag::Binary(other, self)
    }
}

impl<'n, N: node::Marker> DagLike for EncodeNode<'n, N> {
    type Node = Self;
    fn data(&self) -> &Self {
        self
    }

    fn as_dag_node(&self) -> Dag<Self> {
        let node = match *self {
            EncodeNode::Node(node) => node,
            EncodeNode::Hidden(..) => return Dag::Nullary,
        };
        match node.inner() {
            node::Inner::Unit
            | node::Inner::Iden
            | node::Inner::Fail(..)
            | node::Inner::Jet(..)
            | node::Inner::Word(..) => Dag::Nullary,
            node::Inner::InjL(sub)
            | node::Inner::InjR(sub)
            | node::Inner::Take(sub)
            | node::Inner::Drop(sub) => Dag::Unary(EncodeNode::Node(sub)),
            node::Inner::Comp(left, right)
            | node::Inner::Case(left, right)
            | node::Inner::Pair(left, right) => {
                Dag::Binary(EncodeNode::Node(left), EncodeNode::Node(right))
            }
            node::Inner::Disconnect(left, right) => {
                right.disconnect_dag_ref(left).map(EncodeNode::Node)
            }
            node::Inner::AssertL(left, rcmr) => {
                Dag::Binary(EncodeNode::Node(left), EncodeNode::Hidden(*rcmr))
            }
            node::Inner::AssertR(lcmr, right) => {
                Dag::Binary(EncodeNode::Hidden(*lcmr), EncodeNode::Node(right))
            }
            node::Inner::Witness(..) => Dag::Nullary,
        }
    }
}

#[derive(Clone)]
enum EncodeId<N: node::Marker> {
    Node(N::SharingId),
    Hidden(Cmr),
}

// Have to implement these manually because Rust sucks.
impl<N: node::Marker> PartialEq for EncodeId<N> {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (EncodeId::Node(left), EncodeId::Node(right)) => left == right,
            (EncodeId::Hidden(left), EncodeId::Hidden(right)) => left == right,
            _ => false,
        }
    }
}

impl<N: node::Marker> Eq for EncodeId<N> {}

impl<N: node::Marker> hash::Hash for EncodeId<N> {
    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
        match self {
            EncodeId::Node(id) => {
                hash::Hash::hash(&false, hasher);
                hash::Hash::hash(id, hasher);
            }
            EncodeId::Hidden(cmr) => {
                hash::Hash::hash(&true, hasher);
                hash::Hash::hash(cmr, hasher);
            }
        }
    }
}

/// Shares nodes based on IMR, *except* for Hidden nodes, which are identified
/// solely by the hash they contain
#[derive(Clone)]
pub struct EncodeSharing<N: node::Marker> {
    map: HashMap<EncodeId<N>, usize>,
}

// Annoyingly we have to implement Default by hand
impl<N: node::Marker> Default for EncodeSharing<N> {
    fn default() -> Self {
        EncodeSharing {
            map: HashMap::default(),
        }
    }
}

impl<'n, N: node::Marker> SharingTracker<EncodeNode<'n, N>> for EncodeSharing<N> {
    fn record(&mut self, d: &EncodeNode<N>, index: usize) -> Option<usize> {
        let id = match d {
            EncodeNode::Node(n) => EncodeId::Node(n.sharing_id()?),
            EncodeNode::Hidden(cmr) => EncodeId::Hidden(*cmr),
        };

        match self.map.entry(id) {
            Entry::Occupied(occ) => Some(*occ.get()),
            Entry::Vacant(vac) => {
                vac.insert(index);
                None
            }
        }
    }

    fn seen_before(&self, d: &EncodeNode<N>) -> Option<usize> {
        let id = match d {
            EncodeNode::Node(n) => EncodeId::Node(n.sharing_id()?),
            EncodeNode::Hidden(cmr) => EncodeId::Hidden(*cmr),
        };

        self.map.get(&id).copied()
    }
}

/// Encode a Simplicity program to bits, without witness data.
///
/// Returns the number of written bits.
pub fn encode_program<W: io::Write, N: node::Marker>(
    program: &node::Node<N>,
    w: &mut BitWriter<W>,
) -> io::Result<usize> {
    let iter = EncodeNode::Node(program).post_order_iter::<EncodeSharing<N>>();

    let len = iter.clone().count();
    let n_start = w.n_total_written();
    encode_natural(len, w)?;

    for node in iter {
        encode_node(node, w)?;
    }

    Ok(w.n_total_written() - n_start)
}

/// Encode a node to bits.
fn encode_node<W: io::Write, N: node::Marker>(
    data: PostOrderIterItem<EncodeNode<N>>,
    w: &mut BitWriter<W>,
) -> io::Result<()> {
    // Handle Hidden nodes specially
    let node = match data.node {
        EncodeNode::Node(node) => node,
        EncodeNode::Hidden(cmr) => {
            w.write_bits_be(0b0110, 4)?;
            encode_hash(cmr.as_ref(), w)?;
            return Ok(());
        }
    };

    if let Some(i_abs) = data.left_index {
        debug_assert!(i_abs < data.index);
        let i = data.index - i_abs;

        if let Some(j_abs) = data.right_index {
            debug_assert!(j_abs < data.index);
            let j = data.index - j_abs;

            match node.inner() {
                node::Inner::Comp(_, _) => {
                    w.write_bits_be(0x00000, 5)?;
                }
                node::Inner::Case(_, _)
                | node::Inner::AssertL(_, _)
                | node::Inner::AssertR(_, _) => {
                    w.write_bits_be(0b00001, 5)?;
                }
                node::Inner::Pair(_, _) => {
                    w.write_bits_be(0b00010, 5)?;
                }
                node::Inner::Disconnect(_, _) => {
                    w.write_bits_be(0b00011, 5)?;
                }
                _ => unreachable!(),
            }

            encode_natural(i, w)?;
            encode_natural(j, w)?;
        } else {
            match node.inner() {
                node::Inner::InjL(_) => {
                    w.write_bits_be(0b00100, 5)?;
                }
                node::Inner::InjR(_) => {
                    w.write_bits_be(0b00101, 5)?;
                }
                node::Inner::Take(_) => {
                    w.write_bits_be(0b00110, 5)?;
                }
                node::Inner::Drop(_) => {
                    w.write_bits_be(0b00111, 5)?;
                }
                node::Inner::Disconnect(_, _) => {
                    w.write_bits_be(0b01011, 5)?;
                }
                _ => unreachable!(),
            };

            encode_natural(i, w)?;
        }
    } else {
        match node.inner() {
            node::Inner::Iden => {
                w.write_bits_be(0b01000, 5)?;
            }
            node::Inner::Unit => {
                w.write_bits_be(0b01001, 5)?;
            }
            node::Inner::Fail(entropy) => {
                w.write_bits_be(0b01010, 5)?;
                encode_hash(entropy.as_ref(), w)?;
            }
            node::Inner::Witness(_) => {
                w.write_bits_be(0b0111, 4)?;
            }
            node::Inner::Jet(jet) => {
                w.write_bit(true)?; // jet or word
                w.write_bit(true)?; // jet
                jet.encode(w)?;
            }
            node::Inner::Word(val) => {
                w.write_bit(true)?; // jet or word
                w.write_bit(false)?; // word
                assert_eq!(val.len().count_ones(), 1);
                let depth = val.len().trailing_zeros();
                encode_natural(1 + depth as usize, w)?;
                encode_value(val, w)?;
            }
            _ => unreachable!(),
        }
    }

    Ok(())
}

/// Encode witness data to bits.
///
/// Returns the number of written bits.
pub fn encode_witness<'a, W: io::Write, I>(witness: I, w: &mut BitWriter<W>) -> io::Result<usize>
where
    I: Iterator<Item = &'a Value> + Clone,
{
    let mut bit_len = 0;
    let n_start = w.n_total_written();

    for value in witness.clone() {
        bit_len += value.len();
    }

    if bit_len == 0 {
        w.write_bit(false)?;
    } else {
        w.write_bit(true)?;
        encode_natural(bit_len, w)?;

        for value in witness {
            encode_value(value, w)?;
        }
    }

    Ok(w.n_total_written() - n_start)
}

/// Encode a value to bits.
pub fn encode_value<W: io::Write>(value: &Value, w: &mut BitWriter<W>) -> io::Result<usize> {
    let n_start = w.n_total_written();

    match value {
        Value::Unit => {}
        Value::SumL(left) => {
            w.write_bit(false)?;
            encode_value(left, w)?;
        }
        Value::SumR(right) => {
            w.write_bit(true)?;
            encode_value(right, w)?;
        }
        Value::Prod(left, right) => {
            encode_value(left, w)?;
            encode_value(right, w)?;
        }
    }

    Ok(w.n_total_written() - n_start)
}

/// Encode a hash to bits.
pub fn encode_hash<W: io::Write>(h: &[u8], w: &mut BitWriter<W>) -> io::Result<usize> {
    for byte in h {
        w.write_bits_be(u64::from(*byte), 8)?;
    }

    Ok(h.len() * 8)
}

/// Encode a positive integer to bits.
pub fn encode_natural<W: io::Write>(mut n: usize, w: &mut BitWriter<W>) -> io::Result<usize> {
    assert!(n > 0, "Zero cannot be encoded");
    let n_start = w.n_total_written();

    /// Minimum number of bits to represent `n` minus the most-significant bit
    fn truncated_bit_len(n: usize) -> usize {
        8 * mem::size_of::<usize>() - n.leading_zeros() as usize - 1
    }

    let mut suffix = Vec::new();

    loop {
        debug_assert!(n > 0);
        let len = truncated_bit_len(n);
        if len == 0 {
            w.write_bit(false)?;
            break;
        } else {
            w.write_bit(true)?;
            suffix.push((n, len));
            n = len;
        }
    }

    while let Some((bits, len)) = suffix.pop() {
        let bits = bits as u64; // Case safety: assuming 64-bit machine or lower
        w.write_bits_be(bits, len)?;
    }

    Ok(w.n_total_written() - n_start)
}

#[cfg(test)]
mod test {
    use super::*;

    use crate::decode;
    use crate::BitIter;

    #[test]
    fn encode_decode_natural() {
        for n in 1..1000 {
            let mut sink = Vec::<u8>::new();
            let mut w = BitWriter::from(&mut sink);
            encode_natural(n, &mut w).expect("encoding to vector");
            w.flush_all().expect("flushing");
            let m = decode::decode_natural(&mut BitIter::from(sink.into_iter()), None)
                .expect("decoding from vector");
            assert_eq!(n, m);
        }
    }
}