1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// SPDX-License-Identifier: CC0-1.0

//! Bit Iterator functionality
//!
//! Simplicity programs are encoded bitwise rather than bytewise. This
//! module provides some helper functionality to make efficient parsing
//! easier. In particular, the `BitIter` type takes a byte iterator and
//! wraps it with some additional functionality (including implementing
//! `Iterator<Item=bool>`.
//!

use crate::{decode, types};
use crate::{Cmr, FailEntropy, Value};
use std::sync::Arc;

/// Attempted to read from a bit iterator, but there was no more data
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct EarlyEndOfStreamError;

/// Two-bit type used during decoding
///
/// Use of an enum rather than a numeric primitive type makes it easier to
/// match on.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(non_camel_case_types)]
pub enum u2 {
    _0,
    _1,
    _2,
    _3,
}

/// Bitwise iterator formed from a wrapped bytewise iterator. Bytes are
/// interpreted big-endian, i.e. MSB is returned first
#[derive(Debug)]
pub struct BitIter<I: Iterator<Item = u8>> {
    /// Byte iterator
    iter: I,
    /// Current byte that contains next bit
    cached_byte: u8,
    /// Number of read bits in current byte
    read_bits: usize,
    /// Total number of read bits
    total_read: usize,
}

impl From<Vec<u8>> for BitIter<std::vec::IntoIter<u8>> {
    fn from(v: Vec<u8>) -> Self {
        BitIter {
            iter: v.into_iter(),
            cached_byte: 0,
            // Set to 8 to force next `Iterator::next` to read a new byte
            // from the underlying iterator
            read_bits: 8,
            total_read: 0,
        }
    }
}

impl<'a> From<&'a [u8]> for BitIter<std::iter::Copied<std::slice::Iter<'a, u8>>> {
    fn from(sl: &'a [u8]) -> Self {
        BitIter {
            iter: sl.iter().copied(),
            cached_byte: 0,
            // Set to 8 to force next `Iterator::next` to read a new byte
            // from the underlying iterator
            read_bits: 8,
            total_read: 0,
        }
    }
}

impl<I: Iterator<Item = u8>> From<I> for BitIter<I> {
    fn from(iter: I) -> Self {
        BitIter {
            iter,
            cached_byte: 0,
            // Set to 8 to force next `Iterator::next` to read a new byte
            // from the underlying iterator
            read_bits: 8,
            total_read: 0,
        }
    }
}

impl<I: Iterator<Item = u8>> Iterator for BitIter<I> {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        if self.read_bits < 8 {
            self.read_bits += 1;
            self.total_read += 1;
            Some(self.cached_byte & (1 << (8 - self.read_bits as u8)) != 0)
        } else {
            self.cached_byte = self.iter.next()?;
            self.read_bits = 0;
            self.next()
        }
    }
}

impl<'a> BitIter<std::iter::Copied<std::slice::Iter<'a, u8>>> {
    /// Creates a new bitwise iterator from a bytewise one. Equivalent
    /// to using `From`
    pub fn byte_slice_window(sl: &'a [u8], start: usize, end: usize) -> Self {
        assert!(start <= end);
        assert!(end <= sl.len() * 8);

        let actual_sl = &sl[start / 8..(end + 7) / 8];
        let mut iter = actual_sl.iter().copied();

        let read_bits = start % 8;
        if read_bits == 0 {
            BitIter {
                iter,
                cached_byte: 0,
                read_bits: 8,
                total_read: 0,
            }
        } else {
            BitIter {
                cached_byte: iter.by_ref().next().unwrap(),
                iter,
                read_bits,
                total_read: 0,
            }
        }
    }
}

impl<I: Iterator<Item = u8>> BitIter<I> {
    /// Creates a new bitwise iterator from a bytewise one. Equivalent
    /// to using `From`
    pub fn new(iter: I) -> Self {
        Self::from(iter)
    }

    /// Reads a single bit from the iterator.
    pub fn read_bit(&mut self) -> Result<bool, EarlyEndOfStreamError> {
        self.next().ok_or(EarlyEndOfStreamError)
    }

    /// Reads two bits from the iterator.
    pub fn read_u2(&mut self) -> Result<u2, EarlyEndOfStreamError> {
        match (self.next(), self.next()) {
            (Some(false), Some(false)) => Ok(u2::_0),
            (Some(false), Some(true)) => Ok(u2::_1),
            (Some(true), Some(false)) => Ok(u2::_2),
            (Some(true), Some(true)) => Ok(u2::_3),
            _ => Err(EarlyEndOfStreamError),
        }
    }

    /// Reads a byte from the iterator.
    pub fn read_u8(&mut self) -> Result<u8, EarlyEndOfStreamError> {
        debug_assert!(self.read_bits > 0);
        let cached = self.cached_byte;
        self.cached_byte = self.iter.next().ok_or(EarlyEndOfStreamError)?;
        self.total_read += 8;

        Ok(cached.checked_shl(self.read_bits as u32).unwrap_or(0)
            + (self.cached_byte >> (8 - self.read_bits)))
    }

    /// Reads a 256-bit CMR from the iterator.
    pub fn read_cmr(&mut self) -> Result<Cmr, EarlyEndOfStreamError> {
        let mut ret = [0; 32];
        for byte in &mut ret {
            *byte = self.read_u8()?;
        }
        Ok(Cmr::from_byte_array(ret))
    }

    /// Reads a 512-bit fail-combinator entropy from the iterator.
    pub fn read_fail_entropy(&mut self) -> Result<FailEntropy, EarlyEndOfStreamError> {
        let mut ret = [0; 64];
        for byte in &mut ret {
            *byte = self.read_u8()?;
        }
        Ok(FailEntropy::from_byte_array(ret))
    }

    /// Decode a value from bits, based on the given type.
    pub fn read_value(&mut self, ty: &types::Final) -> Result<Arc<Value>, EarlyEndOfStreamError> {
        enum State<'a> {
            ProcessType(&'a types::Final),
            DoSumL,
            DoSumR,
            DoProduct,
        }

        let mut stack = vec![State::ProcessType(ty)];
        let mut result_stack = vec![];
        while let Some(state) = stack.pop() {
            match state {
                State::ProcessType(ty) => match ty.bound() {
                    types::CompleteBound::Unit => result_stack.push(Value::unit()),
                    types::CompleteBound::Sum(ref l, ref r) => {
                        if self.read_bit()? {
                            stack.push(State::DoSumR);
                            stack.push(State::ProcessType(r));
                        } else {
                            stack.push(State::DoSumL);
                            stack.push(State::ProcessType(l));
                        }
                    }
                    types::CompleteBound::Product(ref l, ref r) => {
                        stack.push(State::DoProduct);
                        stack.push(State::ProcessType(r));
                        stack.push(State::ProcessType(l));
                    }
                },
                State::DoSumL => {
                    let val = result_stack.pop().unwrap();
                    result_stack.push(Value::sum_l(val));
                }
                State::DoSumR => {
                    let val = result_stack.pop().unwrap();
                    result_stack.push(Value::sum_r(val));
                }
                State::DoProduct => {
                    let val_r = result_stack.pop().unwrap();
                    let val_l = result_stack.pop().unwrap();
                    result_stack.push(Value::prod(val_l, val_r));
                }
            }
        }
        assert_eq!(result_stack.len(), 1);
        Ok(result_stack.pop().unwrap())
    }

    /// Decode a natural number from bits.
    ///
    /// If a bound is specified, then the decoding terminates before trying to
    /// decode a larger number.
    pub fn read_natural(&mut self, bound: Option<usize>) -> Result<usize, decode::Error> {
        decode::decode_natural(self, bound)
    }

    /// Accessor for the number of bits which have been read,
    /// in total, from this iterator
    pub fn n_total_read(&self) -> usize {
        self.total_read
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn empty_iter() {
        let mut iter = BitIter::from([].iter().cloned());
        assert!(iter.next().is_none());
        assert_eq!(iter.read_bit(), Err(EarlyEndOfStreamError));
        assert_eq!(iter.read_u2(), Err(EarlyEndOfStreamError));
        assert_eq!(iter.read_u8(), Err(EarlyEndOfStreamError));
        assert_eq!(iter.read_cmr(), Err(EarlyEndOfStreamError));
        assert_eq!(iter.n_total_read(), 0);
    }

    #[test]
    fn one_bit_iter() {
        let mut iter = BitIter::from([0x80].iter().cloned());
        assert_eq!(iter.read_bit(), Ok(true));
        assert_eq!(iter.read_bit(), Ok(false));
        assert_eq!(iter.read_u8(), Err(EarlyEndOfStreamError));
        assert_eq!(iter.n_total_read(), 2);
    }

    #[test]
    fn bit_by_bit() {
        let mut iter = BitIter::from([0x0f, 0xaa].iter().cloned());
        for _ in 0..4 {
            assert_eq!(iter.next(), Some(false));
        }
        for _ in 0..4 {
            assert_eq!(iter.next(), Some(true));
        }
        for _ in 0..4 {
            assert_eq!(iter.next(), Some(true));
            assert_eq!(iter.next(), Some(false));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn byte_by_byte() {
        let mut iter = BitIter::from([0x0f, 0xaa].iter().cloned());
        assert_eq!(iter.read_u8(), Ok(0x0f));
        assert_eq!(iter.read_u8(), Ok(0xaa));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn regression_1() {
        let mut iter = BitIter::from([0x34, 0x90].iter().cloned());
        assert_eq!(iter.read_u2(), Ok(u2::_0)); // 0011
        assert_eq!(iter.read_u2(), Ok(u2::_3)); // 0011
        assert_eq!(iter.next(), Some(false)); // 0
        assert_eq!(iter.read_u2(), Ok(u2::_2)); // 10
        assert_eq!(iter.read_u2(), Ok(u2::_1)); // 01
        assert_eq!(iter.n_total_read(), 9);
    }

    #[test]
    fn byte_slice_window() {
        let data = [0x12, 0x23, 0x34];

        let mut full = BitIter::byte_slice_window(&data, 0, 24);
        assert_eq!(full.read_u8(), Ok(0x12));
        assert_eq!(full.n_total_read(), 8);
        assert_eq!(full.read_u8(), Ok(0x23));
        assert_eq!(full.n_total_read(), 16);
        assert_eq!(full.read_u8(), Ok(0x34));
        assert_eq!(full.n_total_read(), 24);
        assert_eq!(full.read_u8(), Err(EarlyEndOfStreamError));

        let mut mid = BitIter::byte_slice_window(&data, 8, 16);
        assert_eq!(mid.read_u8(), Ok(0x23));
        assert_eq!(mid.read_u8(), Err(EarlyEndOfStreamError));

        let mut offs = BitIter::byte_slice_window(&data, 4, 20);
        assert_eq!(offs.read_u8(), Ok(0x22));
        assert_eq!(offs.read_u8(), Ok(0x33));
        assert_eq!(offs.read_u8(), Err(EarlyEndOfStreamError));

        let mut shift1 = BitIter::byte_slice_window(&data, 1, 24);
        assert_eq!(shift1.read_u8(), Ok(0x24));
        assert_eq!(shift1.read_u8(), Ok(0x46));
        assert_eq!(shift1.read_u8(), Err(EarlyEndOfStreamError));

        let mut shift7 = BitIter::byte_slice_window(&data, 7, 24);
        assert_eq!(shift7.read_u8(), Ok(0x11));
        assert_eq!(shift7.read_u8(), Ok(0x9a));
        assert_eq!(shift7.read_u8(), Err(EarlyEndOfStreamError));
    }
}