1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
// SPDX-License-Identifier: CC0-1.0
use crate::jet::Jet;
use crate::Value;
use std::{cmp, fmt};
#[cfg(feature = "elements")]
use std::{convert::TryFrom, io};
#[cfg(feature = "elements")]
use elements::encode::Encodable;
/// CPU cost of a Simplicity expression.
///
/// The cost is measured in milli weight units
/// and can be converted into weight units using the appropriate method.
///
/// Roughly speaking, the operational semantics of a combinator
/// on the Bit Machine determine its cost.
///
/// First, every combinator has a fixed overhead cost.
/// Frame allocations, copy and write operations cost proportional
/// to the number of allocated or written bits.
/// Frame moves / drops or cursor moves are one-step operations
/// that are covered by the overhead.
///
/// The cost of a program is compared to its _budget_.
/// A program is valid if it does not exceed its budget.
///
/// The budget is the size of the witness stack
/// of the transaction input that includes the program.
/// Users pay for their Simplicity programs in terms of fees
/// which are based on transaction size, like normal Tapscript.
///
/// Programs that are CPU-heavy need to be padded
/// so that the witness stack provides a large-enough budget.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Cost(u32);
impl Cost {
/// Overhead constant.
///
/// Every combinator that is executed has this overhead added to its cost.
const OVERHEAD: Self = Cost(100);
/// Cost of combinators that are never executed.
///
/// **This should only be used for `fail` nodes!**
const NEVER_EXECUTED: Self = Cost(0);
/// Maximum cost allowed by consensus.
///
/// This is equal to the maximum budget that any program
/// can have inside a Taproot transaction:
/// 4 million weight units plus 50 free weight units for validation.
///
/// This assumes a block that consists of a single transaction
/// which in turn consists of nothing but its witness stack.
///
/// Transactions include other data besides the witness stack.
/// Also, transaction may have multiple inputs and
/// blocks usually include multiple transactions.
/// This means that the maximum budget is an unreachable upper bound.
pub const CONSENSUS_MAX: Self = Cost(4_000_050_000);
/// Return the cost of a type with the given bit width.
pub const fn of_type(bit_width: usize) -> Self {
// Cast safety: bit width cannot be more than 2^32 - 1
Cost(bit_width as u32)
}
/// Convert the given milli weight units into cost.
pub const fn from_milliweight(milliweight: u32) -> Self {
Cost(milliweight)
}
/// Return whether the cost is allowed by consensus.
///
/// This means the cost is within the maximum budget
/// that any program inside a Taproot transaction can have.
pub fn is_consensus_valid(&self) -> bool {
self <= &Self::CONSENSUS_MAX
}
/// Return whether the cost is less or equal the given weight.
pub fn less_equal_weight(&self, weight: u32) -> bool {
self.0 <= weight.saturating_mul(1000)
}
/// Return the minimum budget required to cover the cost.
fn required_budget(&self) -> u32 {
// Saturating addition to avoid panic at numeric bounds
// This results in a slightly different rounding for cost values close to u32::MAX.
// These values are strictly larger than CONSENSUS_MAX and are of no significance.
self.0.saturating_add(999) / 1000
}
/// Return the budget of the given script witness of a transaction output.
///
/// The script witness is passed as `&Vec<Vec<u8>>` in order to use
/// the consensus encoding implemented for this type.
#[cfg(feature = "elements")]
fn get_budget(script_witness: &Vec<Vec<u8>>) -> u32 {
let mut sink = io::sink();
let witness_stack_serialized_len = script_witness
.consensus_encode(&mut sink)
.expect("writing to sink never fails");
let budget = u32::try_from(witness_stack_serialized_len)
.expect("Serialized witness stack must be shorter than 2^32 elements");
budget.saturating_add(50)
}
/// Return whether the cost is within the budget of
/// the given script witness of a transaction input.
///
/// The script witness is passed as `&Vec<Vec<u8>>` in order to use
/// the consensus encoding implemented for this type.
#[cfg(feature = "elements")]
pub fn is_budget_valid(&self, script_witness: &Vec<Vec<u8>>) -> bool {
let budget = Self::get_budget(script_witness);
self.less_equal_weight(budget)
}
/// Return the annex bytes that are required as padding
/// so the transaction input has enough budget to cover the cost.
///
/// The first annex byte is 0x50, as defined in BIP 341.
/// The following padding bytes are 0x00.
#[cfg(feature = "elements")]
pub fn get_padding(&self, script_witness: &Vec<Vec<u8>>) -> Option<Vec<u8>> {
let required_budget = self.required_budget();
let current_budget = Self::get_budget(script_witness);
if required_budget <= current_budget {
return None;
}
let required_budget = required_budget - current_budget;
// Two bytes are automatically added to the encoded witness stack by adding the annex:
//
// 1. The encoded annex starts with the annex byte length
// 2. The first annex byte is always 0x50
//
// The remaining padding is done by adding (zero) bytes to the annex.
//
// Cast safety: assuming 32-bit machine or higher
let remaining_padding_len = required_budget.saturating_sub(2) as usize;
let annex_bytes: Vec<u8> = std::iter::once(0x50)
.chain(std::iter::repeat(0x00).take(remaining_padding_len))
.collect();
Some(annex_bytes)
}
}
impl fmt::Display for Cost {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
impl std::ops::Add for Cost {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Cost(self.0.saturating_add(rhs.0))
}
}
/// Bounds on the resources required by a node during execution on the Bit Machine
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct NodeBounds {
/// Upper bound on the required number of cells (bits).
/// The root additionally requires the bit width of its source and target type (input, output)
pub extra_cells: usize,
/// Upper bound on the required number of frames (sum of read and write frames).
/// The root additionally requires two frames (input, output)
pub extra_frames: usize,
/// CPU cost
pub cost: Cost,
}
impl NodeBounds {
const NOP: Self = NodeBounds {
extra_cells: 0,
extra_frames: 0,
cost: Cost::OVERHEAD,
};
const NEVER_EXECUTED: Self = NodeBounds {
extra_cells: 0,
extra_frames: 0,
cost: Cost::NEVER_EXECUTED,
};
fn from_child(child: Self) -> Self {
NodeBounds {
extra_cells: child.extra_cells,
extra_frames: child.extra_frames,
cost: Cost::OVERHEAD + child.cost,
}
}
/// Node bounds for an `iden` node
pub fn iden(target_type: usize) -> NodeBounds {
NodeBounds {
extra_cells: 0,
extra_frames: 0,
cost: Cost::OVERHEAD + Cost::of_type(target_type),
}
}
/// Node bounds for a `unit` node
pub const fn unit() -> NodeBounds {
NodeBounds::NOP
}
/// Node bounds for an `injl` node
pub fn injl(child: Self) -> NodeBounds {
Self::from_child(child)
}
/// Node bounds for an `injr` node
pub fn injr(child: Self) -> NodeBounds {
Self::from_child(child)
}
/// Node bounds for a `take` node
pub fn take(child: Self) -> NodeBounds {
Self::from_child(child)
}
/// Node bounds for a `drop` node
pub fn drop(child: Self) -> NodeBounds {
Self::from_child(child)
}
/// Node bounds for a `comp` node
pub fn comp(left: Self, right: Self, mid_ty_bit_width: usize) -> NodeBounds {
NodeBounds {
extra_cells: mid_ty_bit_width + cmp::max(left.extra_cells, right.extra_cells),
extra_frames: 1 + cmp::max(left.extra_frames, right.extra_frames),
cost: Cost::OVERHEAD + Cost::of_type(mid_ty_bit_width) + left.cost + right.cost,
}
}
/// Node bounds for a `case` node
pub fn case(left: Self, right: Self) -> NodeBounds {
NodeBounds {
extra_cells: cmp::max(left.extra_cells, right.extra_cells),
extra_frames: cmp::max(left.extra_frames, right.extra_frames),
cost: Cost::OVERHEAD + cmp::max(left.cost, right.cost),
}
}
/// Node bounds for a `assertl` node
pub fn assertl(child: Self) -> NodeBounds {
Self::from_child(child)
}
/// Node bounds for a `assertr` node
pub fn assertr(child: Self) -> NodeBounds {
Self::from_child(child)
}
/// Node bounds for a `pair` node
pub fn pair(left: Self, right: Self) -> NodeBounds {
NodeBounds {
extra_cells: cmp::max(left.extra_cells, right.extra_cells),
extra_frames: cmp::max(left.extra_frames, right.extra_frames),
cost: Cost::OVERHEAD + left.cost + right.cost,
}
}
// disconnect, jet, witness, word
/// Node bounds for a `disconnect` node
pub fn disconnect(
left: Self,
right: Self,
left_target_b_bit_width: usize, // bit width of B in (b x C) target type
left_source_bit_width: usize,
left_target_bit_width: usize,
) -> NodeBounds {
NodeBounds {
extra_cells: left_source_bit_width
+ left_target_bit_width
+ cmp::max(left.extra_cells, right.extra_cells),
extra_frames: 2 + cmp::max(left.extra_frames, right.extra_frames),
cost: Cost::OVERHEAD
+ Cost::of_type(left_source_bit_width)
+ Cost::of_type(left_source_bit_width)
+ Cost::of_type(left_target_bit_width)
+ Cost::of_type(left_target_b_bit_width)
+ left.cost
+ right.cost,
}
}
/// Node bounds for an arbitrary jet node
pub fn witness(target_ty_bit_width: usize) -> NodeBounds {
NodeBounds {
extra_cells: target_ty_bit_width,
extra_frames: 0,
cost: Cost::OVERHEAD + Cost::of_type(target_ty_bit_width),
}
}
/// Node bounds for an arbitrary jet node
pub fn jet<J: Jet>(jet: J) -> NodeBounds {
NodeBounds {
extra_cells: 0,
extra_frames: 0,
cost: Cost::OVERHEAD + jet.cost(),
}
}
/// Node bounds for an arbitrary constant word node
pub fn const_word(value: &Value) -> NodeBounds {
NodeBounds {
extra_cells: 0,
extra_frames: 0,
cost: Cost::OVERHEAD + Cost::of_type(value.len()),
}
}
/// Node bounds for a `fail` node.
///
/// This is a bit of a silly constructor because if a `fail` node is actually
/// executed in the bit machine, it will fail instantly, while if it *isn't*
/// executed, it will fail the "no unexecuted nodes" check. But to analyze
/// arbitrary programs, we need it.
pub const fn fail() -> NodeBounds {
NodeBounds::NEVER_EXECUTED
}
}
/// Number of frames required for the input and output of a Simplicity expression
pub(crate) const IO_EXTRA_FRAMES: usize = 2;
#[cfg(test)]
mod tests {
use super::*;
use simplicity_sys::ffi::bounded::cost_overhead;
#[test]
fn test_overhead() {
// Check that C overhead is same OVERHEAD
assert_eq!(Cost::OVERHEAD.0, cost_overhead());
}
#[test]
fn test_required_budget() {
let test_vectors = vec![
(Cost::NEVER_EXECUTED, 0),
(Cost::from_milliweight(1), 1),
(Cost::from_milliweight(999), 1),
(Cost::from_milliweight(1_000), 1),
(Cost::from_milliweight(1_001), 2),
(Cost::from_milliweight(1_999), 2),
(Cost::from_milliweight(2_000), 2),
(Cost::CONSENSUS_MAX, 4_000_050),
];
for (cost, expected_budget) in test_vectors {
let budget = cost.required_budget();
assert_eq!(budget, expected_budget);
}
}
#[test]
#[cfg(feature = "elements")]
fn test_get_padding() {
// The budget of the empty witness stack is 51 WU:
//
// 1. 50 WU of free signature operations
// 2. 1 WU for the length byte of the witness stack
let empty = 51_000;
// The encoded annex starts with a length byte, so remove one padding byte from the annex
let test_vectors = vec![
(Cost::from_milliweight(0), vec![], None),
(Cost::from_milliweight(empty), vec![], None),
(Cost::from_milliweight(empty + 1), vec![], Some(1)),
(Cost::from_milliweight(empty + 2_000), vec![], Some(1)),
(Cost::from_milliweight(empty + 2_001), vec![], Some(2)),
(Cost::from_milliweight(empty + 3_000), vec![], Some(2)),
(Cost::from_milliweight(empty + 3_001), vec![], Some(3)),
(Cost::from_milliweight(empty + 4_000), vec![], Some(3)),
(Cost::from_milliweight(empty + 4_001), vec![], Some(4)),
(Cost::from_milliweight(empty + 50_000), vec![], Some(49)),
];
for (cost, mut witness, maybe_padding) in test_vectors {
match maybe_padding {
None => {
assert!(cost.is_budget_valid(&witness));
assert!(cost.get_padding(&witness).is_none());
}
Some(expected_annex_len) => {
assert!(!cost.is_budget_valid(&witness));
let annex_bytes = cost.get_padding(&witness).expect("not enough budget");
assert_eq!(expected_annex_len, annex_bytes.len());
witness.extend(std::iter::once(annex_bytes));
assert!(cost.is_budget_valid(&witness));
witness.pop();
assert!(!cost.is_budget_valid(&witness), "Padding must be minimal");
}
}
}
}
}