1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use multimap::MultiMap;

/// Parsed Arguments
pub struct Arguments {
    arg_map: MultiMap<String, Option<String>>,
}

impl Arguments {
    /// Parse arguments. This cannot fail. Arguments are simply
    /// denoted by a single `-` followed by the argument,
    /// and the value is immediately after. Multiple instances
    /// can be contained, and arguments can contain no value
    ///
    /// # Arguments
    ///
    /// `args`: The arguments
    pub fn parse<S: AsRef<str>>(args: &[S]) -> Arguments {
        let mut arg_map = MultiMap::new();
        for (key, val) in args.iter().map(|s| s.as_ref()).zip(
            args.iter()
                .map(|s| s.as_ref())
                .skip(1)
                .chain(std::iter::once("")),
        ) {
            if let Some(stripped) = key.strip_prefix('-') {
                arg_map.insert(
                    stripped.to_string(),
                    if val.is_empty() || val.starts_with('-') {
                        None
                    } else {
                        Some(val.to_string())
                    },
                );
            }
        }
        Arguments { arg_map }
    }

    /// Checks whether or not an argument is present in the list
    ///
    /// # Arguments
    ///
    /// `key`: The key to check
    pub fn contains(&self, key: &str) -> bool {
        self.arg_map.contains_key(key)
    }

    /// Checks whether or not an argument is present in the list
    /// with a non-empty value
    ///
    /// # Arguments
    ///
    /// `key`: The key to check
    pub fn contains_val(&self, key: &str) -> bool {
        self.arg_map
            .get_vec(key)
            .and_then(|vals| vals.iter().find(|&val| val.is_some()))
            .is_some()
    }

    /// Checks whether or not the arguments are empty
    pub fn is_empty(&self) -> bool {
        self.arg_map.is_empty()
    }

    /// Gets the first value with the given key
    ///
    /// # Arguments
    ///
    /// `key`: The key to fetch
    pub fn get(&self, key: &str) -> Option<&Option<String>> {
        self.arg_map.get(key)
    }

    /// Gets all values with the given key
    ///
    /// # Arguments
    ///
    /// `key`: The key to fetch
    pub fn get_vec(&self, key: &str) -> Option<&Vec<Option<String>>> {
        self.arg_map.get_vec(key)
    }

    /// Returns the number of arguments that were parsed
    pub fn len(&self) -> usize {
        self.arg_map.len()
    }
}

#[cfg(test)]
mod test {
    use super::Arguments;

    #[test]
    fn empty() {
        let args = Arguments::parse::<String>(&[]);
        assert!(args.is_empty());
        assert_eq!(args.len(), 0);
    }

    #[test]
    fn no_arg() {
        let args = Arguments::parse(&["arg"]);
        assert!(args.is_empty());
        assert_eq!(args.len(), 0);
    }

    #[test]
    fn one_empty() {
        let args = Arguments::parse(&["-key"]);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 1);
        assert!(args.contains("key"));
        assert!(!args.contains_val("key"));
        assert!(args.get("key").is_some());
        assert_eq!(args.get_vec("key").unwrap().len(), 1);
    }

    #[test]
    fn one_key() {
        let args = Arguments::parse(&["-key", "val"]);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 1);
        assert!(args.contains("key"));
        assert!(args.contains_val("key"));
        assert!(args.get("key").is_some());
        assert_eq!(args.get("key").unwrap().as_ref().unwrap(), "val");
        assert_eq!(args.get_vec("key").unwrap().len(), 1);
    }

    #[test]
    fn one_key_repeated() {
        let args = Arguments::parse(&["-key", "val", "-key", "val2"]);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 1);
        assert!(args.contains("key"));
        assert!(args.contains_val("key"));
        assert!(args.get("key").is_some());
        assert_eq!(args.get("key").unwrap().as_ref().unwrap(), "val");
        assert_eq!(
            args.get_vec("key").unwrap(),
            &vec!(Some("val".to_string()), Some("val2".to_string()))
        );
        assert_eq!(args.get_vec("key").unwrap().len(), 2);
    }

    #[test]
    fn one_key_cut_short() {
        let args = Arguments::parse(&["-key", "-key", "val2"]);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 1);
        assert!(args.contains("key"));
        assert!(args.contains_val("key"));
        assert!(args.get("key").is_some());
        assert_eq!(args.get("key").unwrap(), &None);
        assert_eq!(
            args.get_vec("key").unwrap(),
            &vec!(None, Some("val2".to_string()))
        );
        assert_eq!(args.get_vec("key").unwrap().len(), 2);
    }

    #[test]
    fn two_keys() {
        let args = Arguments::parse(&["-key", "val", "-key2", "val2"]);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 2);
        assert!(args.contains("key"));
        assert!(args.contains("key2"));
        assert!(args.contains_val("key"));
        assert!(args.contains_val("key2"));
        assert!(args.get("key").is_some());
        assert!(args.get("key2").is_some());
        assert_eq!(args.get("key").unwrap().as_ref().unwrap(), "val");
        assert_eq!(args.get("key2").unwrap().as_ref().unwrap(), "val2");
        assert_eq!(args.get_vec("key").unwrap().len(), 1);
        assert_eq!(args.get_vec("key2").unwrap().len(), 1);
    }

    #[test]
    fn two_keys_cut_short() {
        let args = Arguments::parse(&["-key", "-key2", "val2"]);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 2);
        assert!(args.contains("key"));
        assert!(args.contains("key2"));
        assert!(!args.contains_val("key"));
        assert!(args.contains_val("key2"));
        assert!(args.get("key").is_some());
        assert!(args.get("key2").is_some());
        assert_eq!(args.get("key").unwrap(), &None);
        assert_eq!(args.get("key2").unwrap().as_ref().unwrap(), "val2");
        assert_eq!(args.get_vec("key").unwrap().len(), 1);
        assert_eq!(args.get_vec("key2").unwrap().len(), 1);
    }

    #[test]
    fn ergonomics() {
        let sys_args: Vec<String> = vec!["-key".into(), "val".into()];
        let args = Arguments::parse(&sys_args);
        assert!(!args.is_empty());
        assert_eq!(args.len(), 1);
        assert!(args.contains("key"));
        assert!(args.contains_val("key"));
        assert!(args.get("key").is_some());
        assert_eq!(args.get("key").unwrap().as_ref().unwrap(), "val");
        assert_eq!(args.get_vec("key").unwrap().len(), 1);
    }
}