Expand description
§Error Function Module - High-Precision Mathematical Functions for Statistical Computing
This module provides optimised implementations of the error function (erf) and complementary
error function (erfc), fundamental mathematical functions essential for probability theory,
statistics, and scientific computing applications.
§Overview
The error function and its complement are crucial for:
- Normal Distribution: CDF and quantile calculations
- Statistical Hypothesis Testing: P-value computations
- Signal Processing: Noise analysis and filtering
- Physics Simulations: Diffusion and heat transfer problems
- Financial Mathematics: Risk assessment and option pricing
§Mathematical Definitions
§Error Function
erf(x) = (2/√π) ∫₀ˣ e^(-t²) dt§Complementary Error Function
erfc(x) = 1 - erf(x) = (2/√π) ∫ₓ^∞ e^(-t²) dt§Inverse Complementary Error Function
erfc⁻¹(p) : ℝ -> ℝ such that erfc(erfc⁻¹(p)) = p§Usage Examples
ⓘ
use crate::kernels::scientific::erf::{erf, erfc, erf_simd, erfc_simd, erfc_inv};
use std::simd::Simd;
// Scalar usage
let x = 1.5;
let erf_val = erf(x); // ≈ 0.9661
let erfc_val = erfc(x); // ≈ 0.0339
let inv_val = erfc_inv(0.1); // ≈ 1.2816 (90th percentile of std normal)
// SIMD usage (8 lanes)
let inputs = Simd::<f64, 8>::from_array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0]);
let results = erf_simd(inputs);