1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use core::ops::{Add, AddAssign, Mul, MulAssign};

use num::{complex::ComplexFloat, Float, NumCast, Zero, One};
use option_trait::Maybe;
use thiserror::Error;
use array_math::SliceMath;

use crate::{util, ComplexOp, MaybeList, MaybeLists, NotPolynomial, Polynomial, Residue, Rpk, SumSequence, System, Tf};

#[derive(Debug, Clone, Copy, PartialEq, Error)]
pub enum ImpInvarError
{
    #[error("Non causal transfer function, i.e. it contains one or more poles at infinity.")]
    NonCausal
}

pub trait ImpInvar: System
{
    type Output: Sized;

    fn impinvar<FS, TOL>(
        self,
        sampling_frequency: FS,
        tolerance: TOL
    ) -> Result<Self::Output, ImpInvarError>
    where
        FS: Maybe<<Self::Domain as ComplexFloat>::Real>,
        TOL: Maybe<<Self::Domain as ComplexFloat>::Real>;
}

impl<T, T2, B, B2, A, A2, R, R2, P, RP, K> ImpInvar for Tf<T, B, A>
where
    T: ComplexFloat<Real: Into<T> + NotPolynomial> + 'static,
    B: MaybeLists<T>,
    A: MaybeList<T>,
    Self: Residue<Output = Rpk<T, R, P, RP, K>> + System<Domain = T>,
    Rpk<R, R2, P, Vec<(R2, P)>, [R; 1]>: Residue<Output = Tf<T2, B2, A2>> + System<Domain: ComplexFloat<Real = T::Real>>,
    T2: ComplexFloat<Real = T::Real> + 'static,
    B2: MaybeLists<T2>,
    A2: MaybeList<T2>,
    B2::MaybeMapped<T>: MaybeLists<T, RowsMapped<Vec<T>>: MaybeLists<T>, RowOwned: MaybeList<T>>,
    Polynomial<T, <B2::MaybeMapped<T> as MaybeLists<T>>::RowOwned>: Into<Polynomial<T, Vec<T>>>,
    A2::MaybeMapped<T>: MaybeList<T>,
    R: ComplexFloat<Real = T::Real> + Mul<T::Real, Output = R> + ComplexOp<P, Output = R2> + AddAssign,
    P: ComplexFloat<Real = T::Real> + Mul<T::Real, Output = P> + Into<R2> + MulAssign + Add<T::Real, Output = P> + Mul<T::Real, Output = P>,
    R2: ComplexFloat<Real = T::Real> + NotPolynomial,
    RP: MaybeList<(R, P)>,
    K: MaybeList<T>,
    SumSequence<(R, P), RP>: Into<SumSequence<(R, P), Vec<(R, P)>>>
{
    type Output = Tf<T, <B2::MaybeMapped<T> as MaybeLists<T>>::RowsMapped<Vec<T>>, A2::MaybeMapped<T>>;

    fn impinvar<FS, TOL>(self, sampling_frequency: FS, tol: TOL) -> Result<Self::Output, ImpInvarError>
    where
        FS: Maybe<T::Real>,
        TOL: Maybe<T::Real>
    {
        let tol = tol.into_option()
            .map(|tol| Float::abs(tol))
            .unwrap_or_else(|| <T::Real as NumCast>::from(1e-3).unwrap());

        let ts = sampling_frequency.into_option()
            .map(|fs| Float::recip(fs))
            .unwrap_or_else(One::one);

        let rpk = self.residue(tol);
        
        let n = rpk.rp.as_view_slice_option()
            .map(<[_]>::len)
            .unwrap_or(0);

        if !rpk.k.is_zero()
        {
            return Err(ImpInvarError::NonCausal)
        }

        let rp_in: SumSequence<(R, P), Vec<(R, P)>> = rpk.rp.into();
        let mut rp_out: SumSequence<(R2, P), Vec<(R2, P)>> = SumSequence::zero();
        let mut k_out = R::zero();

        let mut i = 0;
        while i < n
        {
            let mut m = 1;
            let first_pole = rp_in[i].1;
            while i + 1 < n && (first_pole - rp_in[i + 1].1).abs() < tol
            {
                i += 1;
                m += 1;
            }

            let rp_in = &rp_in[i + 1 - m..=i];
            let n = rp_in.len();

            let p_out = (first_pole*ts).exp();
            let kn_out = rp_in[0].0*ts;
            let mut r_out: Polynomial<R2, _> = Polynomial::new(vec![kn_out.into()*p_out.into()]);

            for j in 1..n
            {
                let h1 = h1_z_deriv(j, p_out, ts);
                r_out = r_out + h1.map_into_owned(Into::into)*rp_in[j].0.into()
            }

            let mut rpn_out = r_out.into_inner()
                .into_iter()
                .rev()
                .map(|r| (r, p_out))
                .collect();

            k_out += kn_out;
            rp_out.append(&mut rpn_out);
            
            i += 1;
        }

        let rpk = Rpk {
            rp: rp_out,
            k: Polynomial::new([k_out])
        };

        let tf = rpk.residue(tol);

        let b = tf.b.truncate_im()
            .into_inner()
            .map_rows_into_owned(|b| {
                let mut b: Vec<_> = Polynomial::new(b).into().into_inner();
                b.pop();
                b
            });

        Ok(Tf {
            b: Polynomial::new(b),
            a: tf.a.truncate_im()
        })
    }
}

pub(crate) fn h1_z_deriv<T>(n: usize, p: T, ts: T::Real)
    -> Polynomial<T, Vec<T>>
where
    T: ComplexFloat<Real: NotPolynomial> + MulAssign + Mul<T::Real, Output = T> + Add<T::Real, Output = T>
{
    let mut d = Polynomial::new(vec![<T::Real as NumCast>::from(1 - (n % 2) as i8*2).unwrap()]);
    for _ in 1..n
    {
        d.push(Zero::zero());
        d = d.clone() + Polynomial::<_, Vec<_>>::new(d.clone().derivate_rpolynomial())
    }

    let mut b = Polynomial::new(vec![]);
    for i in 1..n
    {
        b = b + h1_deriv::<T::Real>(n + 1 - i)*d[i]
    }
    let mul = Float::powi(ts, n as i32 + 1)/util::factorial(n);
    for (i, b) in b.iter_mut()
        .enumerate()
    {
        *b *= p.powi((n + 1 - i) as i32)*mul
    }
    b
}

fn h1_deriv<T>(n: usize)
    -> Polynomial<T, Vec<T>>
where
    T: Float
{
    let f: T = util::factorial(n);
    let s = <T as NumCast>::from(1 - (n % 2) as i8*2).unwrap();
    Polynomial::new(
        (0..=n).map(|i| f*s*util::bincoeff(n, i))
            .collect()
    )
}

#[cfg(test)]
mod test
{
    use crate::{Tf, ImpInvar};

    #[test]
    fn test()
    {
        let h = Tf::new(
            [4.0, 5.0],
            [1.0, 2.0, 3.0]
        );

        let hz = h.impinvar((), ())
            .unwrap();

        println!("{:?}", hz);
    }
}