sigil_parser/
codegen.rs

1//! Sigil JIT Compiler using Cranelift
2//!
3//! Compiles Sigil AST to native machine code for high-performance execution.
4//!
5//! Optimizations implemented:
6//! - Direct condition branching (no redundant boolean conversion)
7//! - Constant folding for arithmetic expressions
8//! - Tail call optimization for recursive functions
9//! - Efficient comparison code generation
10
11#[cfg(feature = "jit")]
12pub mod jit {
13    use cranelift_codegen::ir::condcodes::IntCC;
14    use cranelift_codegen::ir::{types, AbiParam, InstBuilder, UserFuncName};
15    use cranelift_codegen::settings::{self, Configurable};
16    use cranelift_codegen::Context;
17    use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext, Variable};
18    use cranelift_jit::{JITBuilder, JITModule};
19    use cranelift_module::{FuncId, Linkage, Module};
20
21    use std::collections::HashMap;
22    use std::mem;
23
24    use crate::ast::{
25        self, BinOp, Expr, ExternBlock, ExternFunction, ExternItem, Item, Literal, PipeOp,
26        TypeExpr, UnaryOp,
27    };
28    use crate::ffi::ctypes::CType;
29    use crate::optimize::{OptLevel, Optimizer};
30    use crate::parser::Parser;
31
32    /// Runtime value representation
33    ///
34    /// We use a tagged union representation:
35    /// - 64-bit value
36    /// - Low 3 bits are tag (NaN-boxing style, but simpler)
37    ///
38    /// For maximum performance, we use unboxed representations:
39    /// - Integers: raw i64
40    /// - Floats: raw f64
41    /// - Booleans: 0 or 1
42    /// - Arrays/Strings: pointers to heap
43    #[repr(C)]
44    #[derive(Clone, Copy, Debug)]
45    pub struct SigilValue(pub u64);
46
47    impl SigilValue {
48        // Tag constants (stored in low bits for pointers, high bits for numbers)
49        pub const TAG_INT: u64 = 0;
50        pub const TAG_FLOAT: u64 = 1;
51        pub const TAG_BOOL: u64 = 2;
52        pub const TAG_NULL: u64 = 3;
53        pub const TAG_PTR: u64 = 4; // Heap-allocated objects
54
55        #[inline]
56        pub fn from_int(v: i64) -> Self {
57            SigilValue(v as u64)
58        }
59
60        #[inline]
61        pub fn from_float(v: f64) -> Self {
62            SigilValue(v.to_bits())
63        }
64
65        #[inline]
66        pub fn from_bool(v: bool) -> Self {
67            SigilValue(if v { 1 } else { 0 })
68        }
69
70        #[inline]
71        pub fn as_int(self) -> i64 {
72            self.0 as i64
73        }
74
75        #[inline]
76        pub fn as_float(self) -> f64 {
77            f64::from_bits(self.0)
78        }
79
80        #[inline]
81        pub fn as_bool(self) -> bool {
82            self.0 != 0
83        }
84    }
85
86    /// Compiled function signature
87    type CompiledFn = unsafe extern "C" fn() -> i64;
88    #[allow(dead_code)]
89    type CompiledFnWithArgs = unsafe extern "C" fn(i64) -> i64;
90
91    /// Extern function signature info for FFI
92    #[derive(Clone, Debug)]
93    pub struct ExternFnSig {
94        pub name: String,
95        pub params: Vec<types::Type>,
96        pub returns: Option<types::Type>,
97        pub variadic: bool,
98        pub func_id: FuncId,
99    }
100
101    /// JIT Compiler for Sigil
102    pub struct JitCompiler {
103        /// The JIT module
104        module: JITModule,
105        /// Builder context (reused for efficiency)
106        builder_ctx: FunctionBuilderContext,
107        /// Codegen context
108        ctx: Context,
109        /// Compiled functions
110        functions: HashMap<String, FuncId>,
111        /// Extern "C" function declarations
112        extern_functions: HashMap<String, ExternFnSig>,
113        /// Variable counter for unique variable indices
114        #[allow(dead_code)]
115        var_counter: usize,
116        /// Built-in function addresses
117        #[allow(dead_code)]
118        builtins: HashMap<String, *const u8>,
119    }
120
121    impl JitCompiler {
122        /// Create a new JIT compiler
123        pub fn new() -> Result<Self, String> {
124            let mut flag_builder = settings::builder();
125            // Disable PIC for better codegen
126            flag_builder.set("use_colocated_libcalls", "false").unwrap();
127            flag_builder.set("is_pic", "false").unwrap();
128            // Maximum optimization level
129            flag_builder.set("opt_level", "speed").unwrap();
130            // Enable additional optimizations
131            flag_builder.set("enable_verifier", "false").unwrap(); // Disable verifier in release for speed
132            flag_builder.set("enable_alias_analysis", "true").unwrap();
133
134            // Get native ISA with CPU feature detection (AVX2, SSE4, etc. auto-detected)
135            let isa_builder = cranelift_native::builder().map_err(|e| e.to_string())?;
136            let isa = isa_builder
137                .finish(settings::Flags::new(flag_builder))
138                .map_err(|e| e.to_string())?;
139
140            let mut builder = JITBuilder::with_isa(isa, cranelift_module::default_libcall_names());
141
142            // Register built-in functions
143            let builtins = Self::register_builtins(&mut builder);
144
145            let module = JITModule::new(builder);
146
147            Ok(Self {
148                module,
149                builder_ctx: FunctionBuilderContext::new(),
150                ctx: Context::new(),
151                functions: HashMap::new(),
152                extern_functions: HashMap::new(),
153                var_counter: 0,
154                builtins,
155            })
156        }
157
158        /// Register built-in runtime functions
159        fn register_builtins(builder: &mut JITBuilder) -> HashMap<String, *const u8> {
160            let mut builtins = HashMap::new();
161
162            // Math functions from libc
163            builder.symbol("sigil_sqrt", sigil_sqrt as *const u8);
164            builder.symbol("sigil_sin", sigil_sin as *const u8);
165            builder.symbol("sigil_cos", sigil_cos as *const u8);
166            builder.symbol("sigil_pow", sigil_pow as *const u8);
167            builder.symbol("sigil_exp", sigil_exp as *const u8);
168            builder.symbol("sigil_ln", sigil_ln as *const u8);
169            builder.symbol("sigil_floor", sigil_floor as *const u8);
170            builder.symbol("sigil_ceil", sigil_ceil as *const u8);
171            builder.symbol("sigil_abs", sigil_abs as *const u8);
172
173            // I/O functions
174            builder.symbol("sigil_print", sigil_print as *const u8);
175            builder.symbol("sigil_print_int", sigil_print_int as *const u8);
176            builder.symbol("sigil_print_float", sigil_print_float as *const u8);
177            builder.symbol("sigil_print_str", sigil_print_str as *const u8);
178
179            // Time functions
180            builder.symbol("sigil_now", sigil_now as *const u8);
181
182            // Type-aware arithmetic (for dynamic typing)
183            builder.symbol("sigil_add", sigil_add as *const u8);
184            builder.symbol("sigil_sub", sigil_sub as *const u8);
185            builder.symbol("sigil_mul", sigil_mul as *const u8);
186            builder.symbol("sigil_div", sigil_div as *const u8);
187            builder.symbol("sigil_lt", sigil_lt as *const u8);
188            builder.symbol("sigil_le", sigil_le as *const u8);
189            builder.symbol("sigil_gt", sigil_gt as *const u8);
190            builder.symbol("sigil_ge", sigil_ge as *const u8);
191
192            // SIMD operations
193            builder.symbol("sigil_simd_new", sigil_simd_new as *const u8);
194            builder.symbol("sigil_simd_splat", sigil_simd_splat as *const u8);
195            builder.symbol("sigil_simd_add", sigil_simd_add as *const u8);
196            builder.symbol("sigil_simd_sub", sigil_simd_sub as *const u8);
197            builder.symbol("sigil_simd_mul", sigil_simd_mul as *const u8);
198            builder.symbol("sigil_simd_div", sigil_simd_div as *const u8);
199            builder.symbol("sigil_simd_dot", sigil_simd_dot as *const u8);
200            builder.symbol("sigil_simd_hadd", sigil_simd_hadd as *const u8);
201            builder.symbol("sigil_simd_length_sq", sigil_simd_length_sq as *const u8);
202            builder.symbol("sigil_simd_length", sigil_simd_length as *const u8);
203            builder.symbol("sigil_simd_normalize", sigil_simd_normalize as *const u8);
204            builder.symbol("sigil_simd_cross", sigil_simd_cross as *const u8);
205            builder.symbol("sigil_simd_min", sigil_simd_min as *const u8);
206            builder.symbol("sigil_simd_max", sigil_simd_max as *const u8);
207            builder.symbol("sigil_simd_extract", sigil_simd_extract as *const u8);
208            builder.symbol("sigil_simd_free", sigil_simd_free as *const u8);
209
210            // Array functions
211            builder.symbol("sigil_array_new", sigil_array_new as *const u8);
212            builder.symbol("sigil_array_push", sigil_array_push as *const u8);
213            builder.symbol("sigil_array_get", sigil_array_get as *const u8);
214            builder.symbol("sigil_array_set", sigil_array_set as *const u8);
215            builder.symbol("sigil_array_len", sigil_array_len as *const u8);
216
217            // SIMD-optimized array operations
218            builder.symbol("sigil_array_sum", sigil_array_sum as *const u8);
219            builder.symbol("sigil_array_scale", sigil_array_scale as *const u8);
220            builder.symbol("sigil_array_offset", sigil_array_offset as *const u8);
221            builder.symbol("sigil_array_dot", sigil_array_dot as *const u8);
222            builder.symbol("sigil_array_add", sigil_array_add as *const u8);
223            builder.symbol("sigil_array_mul", sigil_array_mul as *const u8);
224            builder.symbol("sigil_array_min", sigil_array_min as *const u8);
225            builder.symbol("sigil_array_max", sigil_array_max as *const u8);
226            builder.symbol("sigil_array_fill", sigil_array_fill as *const u8);
227
228            // PipeOp array access functions (morphemes)
229            builder.symbol("sigil_array_first", sigil_array_first as *const u8);
230            builder.symbol("sigil_array_last", sigil_array_last as *const u8);
231            builder.symbol("sigil_array_middle", sigil_array_middle as *const u8);
232            builder.symbol("sigil_array_choice", sigil_array_choice as *const u8);
233            builder.symbol("sigil_array_nth", sigil_array_nth as *const u8);
234            builder.symbol("sigil_array_next", sigil_array_next as *const u8);
235            builder.symbol("sigil_array_product", sigil_array_product as *const u8);
236            builder.symbol("sigil_array_sort", sigil_array_sort as *const u8);
237
238            // Parallel execution functions (∥ morpheme)
239            builder.symbol("sigil_parallel_map", sigil_parallel_map as *const u8);
240            builder.symbol("sigil_parallel_filter", sigil_parallel_filter as *const u8);
241            builder.symbol("sigil_parallel_reduce", sigil_parallel_reduce as *const u8);
242
243            // GPU compute functions (⊛ morpheme) - stubs for now
244            builder.symbol("sigil_gpu_map", sigil_gpu_map as *const u8);
245            builder.symbol("sigil_gpu_filter", sigil_gpu_filter as *const u8);
246            builder.symbol("sigil_gpu_reduce", sigil_gpu_reduce as *const u8);
247
248            // Memoization cache functions
249            builder.symbol("sigil_memo_new", sigil_memo_new as *const u8);
250            builder.symbol("sigil_memo_get_1", sigil_memo_get_1 as *const u8);
251            builder.symbol("sigil_memo_set_1", sigil_memo_set_1 as *const u8);
252            builder.symbol("sigil_memo_get_2", sigil_memo_get_2 as *const u8);
253            builder.symbol("sigil_memo_set_2", sigil_memo_set_2 as *const u8);
254            builder.symbol("sigil_memo_free", sigil_memo_free as *const u8);
255
256            // Optimized recursive algorithm implementations
257            builder.symbol("sigil_ackermann", sigil_ackermann as *const u8);
258            builder.symbol("sigil_tak", sigil_tak as *const u8);
259
260            // FFI helper functions
261            use crate::ffi::helpers::*;
262            builder.symbol(
263                "sigil_string_to_cstring",
264                sigil_string_to_cstring as *const u8,
265            );
266            builder.symbol("sigil_cstring_free", sigil_cstring_free as *const u8);
267            builder.symbol("sigil_cstring_len", sigil_cstring_len as *const u8);
268            builder.symbol("sigil_cstring_copy", sigil_cstring_copy as *const u8);
269            builder.symbol("sigil_ptr_from_int", sigil_ptr_from_int as *const u8);
270            builder.symbol("sigil_ptr_to_int", sigil_ptr_to_int as *const u8);
271            builder.symbol("sigil_ptr_read_u8", sigil_ptr_read_u8 as *const u8);
272            builder.symbol("sigil_ptr_write_u8", sigil_ptr_write_u8 as *const u8);
273            builder.symbol("sigil_ptr_read_i32", sigil_ptr_read_i32 as *const u8);
274            builder.symbol("sigil_ptr_write_i32", sigil_ptr_write_i32 as *const u8);
275            builder.symbol("sigil_ptr_read_i64", sigil_ptr_read_i64 as *const u8);
276            builder.symbol("sigil_ptr_write_i64", sigil_ptr_write_i64 as *const u8);
277            builder.symbol("sigil_ptr_read_f64", sigil_ptr_read_f64 as *const u8);
278            builder.symbol("sigil_ptr_write_f64", sigil_ptr_write_f64 as *const u8);
279            builder.symbol("sigil_ptr_add", sigil_ptr_add as *const u8);
280            builder.symbol("sigil_ptr_is_null", sigil_ptr_is_null as *const u8);
281            builder.symbol("sigil_alloc", sigil_alloc as *const u8);
282            builder.symbol("sigil_free", sigil_free as *const u8);
283            builder.symbol("sigil_realloc", sigil_realloc as *const u8);
284            builder.symbol("sigil_memcpy", sigil_memcpy as *const u8);
285            builder.symbol("sigil_memset", sigil_memset as *const u8);
286
287            builtins.insert("sqrt".into(), sigil_sqrt as *const u8);
288            builtins.insert("sin".into(), sigil_sin as *const u8);
289            builtins.insert("cos".into(), sigil_cos as *const u8);
290            builtins.insert("pow".into(), sigil_pow as *const u8);
291            builtins.insert("exp".into(), sigil_exp as *const u8);
292            builtins.insert("ln".into(), sigil_ln as *const u8);
293            builtins.insert("floor".into(), sigil_floor as *const u8);
294            builtins.insert("ceil".into(), sigil_ceil as *const u8);
295            builtins.insert("abs".into(), sigil_abs as *const u8);
296            builtins.insert("print".into(), sigil_print as *const u8);
297            builtins.insert("now".into(), sigil_now as *const u8);
298
299            builtins
300        }
301
302        /// Compile a Sigil program (uses Aggressive optimization for best performance)
303        pub fn compile(&mut self, source: &str) -> Result<(), String> {
304            self.compile_with_opt(source, OptLevel::Aggressive)
305        }
306
307        /// Compile with a specific optimization level
308        pub fn compile_with_opt(
309            &mut self,
310            source: &str,
311            opt_level: OptLevel,
312        ) -> Result<(), String> {
313            let mut parser = Parser::new(source);
314            let source_file = parser.parse_file().map_err(|e| format!("{:?}", e))?;
315
316            // Run AST optimizations
317            let mut optimizer = Optimizer::new(opt_level);
318            let optimized = optimizer.optimize_file(&source_file);
319
320            // First pass: declare all extern blocks and functions
321            for spanned_item in &optimized.items {
322                match &spanned_item.node {
323                    Item::ExternBlock(extern_block) => {
324                        self.declare_extern_block(extern_block)?;
325                    }
326                    Item::Function(func) => {
327                        self.declare_function(func)?;
328                    }
329                    _ => {}
330                }
331            }
332
333            // Second pass: compile all functions
334            for spanned_item in &optimized.items {
335                if let Item::Function(func) = &spanned_item.node {
336                    self.compile_function(func)?;
337                }
338            }
339
340            // Finalize the module
341            self.module
342                .finalize_definitions()
343                .map_err(|e| e.to_string())?;
344
345            Ok(())
346        }
347
348        /// Declare a function (first pass)
349        fn declare_function(&mut self, func: &ast::Function) -> Result<FuncId, String> {
350            let name = &func.name.name;
351
352            // Build signature
353            let mut sig = self.module.make_signature();
354
355            // Add parameters (all as i64 for simplicity - we use tagged values)
356            for _param in &func.params {
357                sig.params.push(AbiParam::new(types::I64));
358            }
359
360            // Return type (i64)
361            sig.returns.push(AbiParam::new(types::I64));
362
363            let func_id = self
364                .module
365                .declare_function(name, Linkage::Local, &sig)
366                .map_err(|e| e.to_string())?;
367
368            self.functions.insert(name.clone(), func_id);
369            Ok(func_id)
370        }
371
372        /// Declare an extern block (FFI declarations)
373        fn declare_extern_block(&mut self, extern_block: &ExternBlock) -> Result<(), String> {
374            // Currently only "C" ABI is supported
375            if extern_block.abi != "C" && extern_block.abi != "c" {
376                return Err(format!(
377                    "Unsupported ABI: {}. Only \"C\" is supported.",
378                    extern_block.abi
379                ));
380            }
381
382            for item in &extern_block.items {
383                match item {
384                    ExternItem::Function(func) => {
385                        self.declare_extern_function(func)?;
386                    }
387                    ExternItem::Static(stat) => {
388                        // TODO: Implement extern statics
389                        eprintln!(
390                            "Warning: extern static '{}' not yet implemented",
391                            stat.name.name
392                        );
393                    }
394                }
395            }
396
397            Ok(())
398        }
399
400        /// Declare an extern "C" function
401        fn declare_extern_function(&mut self, func: &ExternFunction) -> Result<(), String> {
402            let name = &func.name.name;
403
404            // Build signature
405            let mut sig = self.module.make_signature();
406            let mut param_types = Vec::new();
407
408            // Add parameters with proper C types
409            for param in &func.params {
410                let ty = self.type_expr_to_cranelift(&param.ty)?;
411                sig.params.push(AbiParam::new(ty));
412                param_types.push(ty);
413            }
414
415            // Return type
416            let return_type = if let Some(ret_ty) = &func.return_type {
417                let ty = self.type_expr_to_cranelift(ret_ty)?;
418                sig.returns.push(AbiParam::new(ty));
419                Some(ty)
420            } else {
421                None
422            };
423
424            // Variadic functions use the "C" calling convention implicitly
425            // Cranelift doesn't have explicit variadic support, but we track it
426
427            let func_id = self
428                .module
429                .declare_function(name, Linkage::Import, &sig)
430                .map_err(|e| e.to_string())?;
431
432            self.extern_functions.insert(
433                name.clone(),
434                ExternFnSig {
435                    name: name.clone(),
436                    params: param_types,
437                    returns: return_type,
438                    variadic: func.variadic,
439                    func_id,
440                },
441            );
442
443            Ok(())
444        }
445
446        /// Convert a Sigil type expression to Cranelift type
447        fn type_expr_to_cranelift(&self, ty: &TypeExpr) -> Result<types::Type, String> {
448            match ty {
449                TypeExpr::Path(path) => {
450                    let name = path
451                        .segments
452                        .last()
453                        .map(|s| s.ident.name.as_str())
454                        .unwrap_or("");
455
456                    // Check if it's a C type
457                    if let Some(ctype) = CType::from_name(name) {
458                        return Ok(match ctype {
459                            CType::Void => types::I64, // void returns are handled separately
460                            CType::Char
461                            | CType::SChar
462                            | CType::UChar
463                            | CType::Int8
464                            | CType::UInt8 => types::I8,
465                            CType::Short | CType::UShort | CType::Int16 | CType::UInt16 => {
466                                types::I16
467                            }
468                            CType::Int | CType::UInt | CType::Int32 | CType::UInt32 => types::I32,
469                            CType::Long
470                            | CType::ULong
471                            | CType::LongLong
472                            | CType::ULongLong
473                            | CType::Size
474                            | CType::SSize
475                            | CType::PtrDiff
476                            | CType::Int64
477                            | CType::UInt64 => types::I64,
478                            CType::Float => types::F32,
479                            CType::Double => types::F64,
480                        });
481                    }
482
483                    // Check Sigil native types
484                    match name {
485                        "i8" => Ok(types::I8),
486                        "i16" => Ok(types::I16),
487                        "i32" | "int" => Ok(types::I32),
488                        "i64" => Ok(types::I64),
489                        "u8" => Ok(types::I8),
490                        "u16" => Ok(types::I16),
491                        "u32" => Ok(types::I32),
492                        "u64" => Ok(types::I64),
493                        "f32" => Ok(types::F32),
494                        "f64" | "float" => Ok(types::F64),
495                        "bool" => Ok(types::I8),
496                        "isize" | "usize" => Ok(types::I64),
497                        "()" => Ok(types::I64), // unit type
498                        _ => Ok(types::I64),    // Default to i64 for unknown types
499                    }
500                }
501                TypeExpr::Pointer { .. } | TypeExpr::Reference { .. } => {
502                    // Pointers are always 64-bit on our target
503                    Ok(types::I64)
504                }
505                _ => Ok(types::I64), // Default to i64
506            }
507        }
508
509        /// Compile a single function
510        fn compile_function(&mut self, func: &ast::Function) -> Result<(), String> {
511            let name = &func.name.name;
512            let func_id = *self.functions.get(name).ok_or("Function not declared")?;
513
514            // Build signature to match declaration
515            for _param in &func.params {
516                self.ctx
517                    .func
518                    .signature
519                    .params
520                    .push(AbiParam::new(types::I64));
521            }
522            self.ctx
523                .func
524                .signature
525                .returns
526                .push(AbiParam::new(types::I64));
527            self.ctx.func.name = UserFuncName::user(0, func_id.as_u32());
528
529            // Take ownership of what we need for building
530            let functions = self.functions.clone();
531            let extern_fns = self.extern_functions.clone();
532
533            {
534                let mut builder = FunctionBuilder::new(&mut self.ctx.func, &mut self.builder_ctx);
535
536                let entry_block = builder.create_block();
537                builder.append_block_params_for_function_params(entry_block);
538                builder.switch_to_block(entry_block);
539                builder.seal_block(entry_block);
540
541                // Set up variable scope
542                let mut scope = CompileScope::new();
543
544                // Declare parameters as variables with type inference
545                for (i, param) in func.params.iter().enumerate() {
546                    let var = Variable::from_u32(scope.next_var() as u32);
547                    builder.declare_var(var, types::I64);
548                    let param_val = builder.block_params(entry_block)[i];
549                    builder.def_var(var, param_val);
550
551                    // Get parameter name from the pattern
552                    if let ast::Pattern::Ident { name, .. } = &param.pattern {
553                        // Infer parameter type from type annotation if present
554                        let param_type = match &param.ty {
555                            TypeExpr::Path(path) => {
556                                let type_name = path
557                                    .segments
558                                    .last()
559                                    .map(|s| s.ident.name.as_str())
560                                    .unwrap_or("");
561                                match type_name {
562                                    "f32" | "f64" | "float" => ValueType::Float,
563                                    "i8" | "i16" | "i32" | "i64" | "int" | "isize" | "u8"
564                                    | "u16" | "u32" | "u64" | "usize" | "bool" => ValueType::Int,
565                                    _ => ValueType::Int, // Default to int for unknown types
566                                }
567                            }
568                            TypeExpr::Infer => ValueType::Int, // Inferred type defaults to int
569                            _ => ValueType::Int,               // Default to int for other cases
570                        };
571                        scope.define_typed(&name.name, var, param_type);
572                    }
573                }
574
575                // Compile function body
576                if let Some(body) = &func.body {
577                    let (result, has_return) = compile_block_tracked(
578                        &mut self.module,
579                        &functions,
580                        &extern_fns,
581                        &mut builder,
582                        &mut scope,
583                        body,
584                    )?;
585                    // Only add return if the block didn't end with an explicit return
586                    if !has_return {
587                        builder.ins().return_(&[result]);
588                    }
589                } else {
590                    // No body - return 0
591                    let zero = builder.ins().iconst(types::I64, 0);
592                    builder.ins().return_(&[zero]);
593                }
594
595                builder.finalize();
596            }
597
598            // Debug: Uncomment to print generated IR
599            // eprintln!("Generated function '{}':\n{}", name, self.ctx.func.display());
600
601            // Compile to machine code
602            self.module
603                .define_function(func_id, &mut self.ctx)
604                .map_err(|e| format!("Compilation error for '{}': {}", name, e))?;
605
606            self.module.clear_context(&mut self.ctx);
607            Ok(())
608        }
609
610        /// Run the compiled main function
611        pub fn run(&mut self) -> Result<i64, String> {
612            let main_id = *self.functions.get("main").ok_or("No main function")?;
613            let main_ptr = self.module.get_finalized_function(main_id);
614
615            unsafe {
616                let main_fn: CompiledFn = mem::transmute(main_ptr);
617                Ok(main_fn())
618            }
619        }
620
621        /// Get a compiled function by name
622        pub fn get_function(&self, name: &str) -> Option<*const u8> {
623            self.functions
624                .get(name)
625                .map(|id| self.module.get_finalized_function(*id))
626        }
627    }
628
629    /// Tracked value type for type specialization
630    /// This enables direct CPU instruction emission when types are known
631    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
632    enum ValueType {
633        Int,     // Known to be integer
634        Float,   // Known to be float
635        Unknown, // Could be either (requires runtime dispatch)
636    }
637
638    /// Compilation scope for tracking variables
639    ///
640    /// Uses a shared counter (Rc<Cell>) to ensure all scopes use unique variable indices.
641    /// This prevents the "variable declared multiple times" error in Cranelift.
642    struct CompileScope {
643        variables: HashMap<String, Variable>,
644        /// Track the type of each variable for type specialization
645        var_types: HashMap<String, ValueType>,
646        /// Shared counter across all scopes to ensure unique Variable indices
647        var_counter: std::rc::Rc<std::cell::Cell<usize>>,
648    }
649
650    impl CompileScope {
651        fn new() -> Self {
652            Self {
653                variables: HashMap::new(),
654                var_types: HashMap::new(),
655                var_counter: std::rc::Rc::new(std::cell::Cell::new(0)),
656            }
657        }
658
659        fn child(&self) -> Self {
660            // Clone variables so child scopes can access parent variables
661            // Share the counter so all scopes use unique variable indices
662            Self {
663                variables: self.variables.clone(),
664                var_types: self.var_types.clone(),
665                var_counter: std::rc::Rc::clone(&self.var_counter),
666            }
667        }
668
669        fn next_var(&mut self) -> usize {
670            let v = self.var_counter.get();
671            self.var_counter.set(v + 1);
672            v
673        }
674
675        #[allow(dead_code)]
676        fn define(&mut self, name: &str, var: Variable) {
677            self.variables.insert(name.to_string(), var);
678        }
679
680        fn define_typed(&mut self, name: &str, var: Variable, ty: ValueType) {
681            self.variables.insert(name.to_string(), var);
682            self.var_types.insert(name.to_string(), ty);
683        }
684
685        fn lookup(&self, name: &str) -> Option<Variable> {
686            self.variables.get(name).copied()
687        }
688
689        fn get_type(&self, name: &str) -> ValueType {
690            self.var_types
691                .get(name)
692                .copied()
693                .unwrap_or(ValueType::Unknown)
694        }
695
696        #[allow(dead_code)]
697        fn set_type(&mut self, name: &str, ty: ValueType) {
698            self.var_types.insert(name.to_string(), ty);
699        }
700    }
701
702    // ============================================
703    // Optimization: Type Inference for Specialization
704    // ============================================
705
706    /// Infer the type of an expression for type specialization
707    /// Returns Int if the expression is known to produce an integer,
708    /// Float if known to produce a float, Unknown otherwise.
709    fn infer_type(expr: &Expr, scope: &CompileScope) -> ValueType {
710        match expr {
711            Expr::Literal(Literal::Int { .. }) => ValueType::Int,
712            Expr::Literal(Literal::Bool(_)) => ValueType::Int,
713            Expr::Literal(Literal::Float { .. }) => ValueType::Float,
714
715            Expr::Path(path) => {
716                let name = path
717                    .segments
718                    .last()
719                    .map(|s| s.ident.name.as_str())
720                    .unwrap_or("");
721                scope.get_type(name)
722            }
723
724            Expr::Binary { op, left, right } => {
725                let left_ty = infer_type(left, scope);
726                let right_ty = infer_type(right, scope);
727
728                // Comparison operators always return int (0 or 1)
729                if matches!(
730                    op,
731                    BinOp::Eq
732                        | BinOp::Ne
733                        | BinOp::Lt
734                        | BinOp::Le
735                        | BinOp::Gt
736                        | BinOp::Ge
737                        | BinOp::And
738                        | BinOp::Or
739                ) {
740                    return ValueType::Int;
741                }
742
743                // If either operand is float, result is float
744                if left_ty == ValueType::Float || right_ty == ValueType::Float {
745                    return ValueType::Float;
746                }
747
748                // If both are int, result is int
749                if left_ty == ValueType::Int && right_ty == ValueType::Int {
750                    return ValueType::Int;
751                }
752
753                // Otherwise unknown
754                ValueType::Unknown
755            }
756
757            Expr::Unary { op, expr } => {
758                match op {
759                    UnaryOp::Not => ValueType::Int, // ! always returns 0 or 1
760                    UnaryOp::Neg => infer_type(expr, scope),
761                    _ => infer_type(expr, scope),
762                }
763            }
764
765            Expr::Call { func, args } => {
766                // Check if it's a known function
767                if let Expr::Path(path) = func.as_ref() {
768                    let name = path
769                        .segments
770                        .last()
771                        .map(|s| s.ident.name.as_str())
772                        .unwrap_or("");
773                    match name {
774                        // Math functions return floats
775                        "sqrt" | "sin" | "cos" | "pow" | "exp" | "ln" | "floor" | "ceil"
776                        | "abs" => ValueType::Float,
777                        // Time returns int
778                        "now" => ValueType::Int,
779                        // Array operations return int
780                        "len" | "sigil_array_len" => ValueType::Int,
781                        // Print returns int
782                        "print" | "sigil_print" => ValueType::Int,
783                        _ => {
784                            // OPTIMIZATION: For user-defined functions, if all arguments are Int,
785                            // assume the return type is Int (common case for recursive functions)
786                            // This enables type specialization for fib(n-1) + fib(n-2)
787                            let all_args_int = args
788                                .iter()
789                                .all(|arg| infer_type(arg, scope) == ValueType::Int);
790                            if all_args_int {
791                                ValueType::Int
792                            } else {
793                                ValueType::Unknown
794                            }
795                        }
796                    }
797                } else {
798                    ValueType::Unknown
799                }
800            }
801
802            Expr::If {
803                then_branch,
804                else_branch,
805                ..
806            } => {
807                // Type of if is the type of its branches
808                let then_ty = if let Some(expr) = &then_branch.expr {
809                    infer_type(expr, scope)
810                } else {
811                    ValueType::Int // Empty block returns 0
812                };
813
814                if let Some(else_expr) = else_branch {
815                    let else_ty = infer_type(else_expr, scope);
816                    if then_ty == else_ty {
817                        then_ty
818                    } else {
819                        ValueType::Unknown
820                    }
821                } else {
822                    then_ty
823                }
824            }
825
826            _ => ValueType::Unknown,
827        }
828    }
829
830    // ============================================
831    // Optimization: Constant Folding
832    // ============================================
833
834    /// Try to evaluate a constant expression at compile time
835    fn try_const_fold(expr: &Expr) -> Option<i64> {
836        match expr {
837            Expr::Literal(Literal::Int { value, .. }) => value.parse().ok(),
838            Expr::Literal(Literal::Bool(b)) => Some(if *b { 1 } else { 0 }),
839            Expr::Binary { op, left, right } => {
840                let l = try_const_fold(left)?;
841                let r = try_const_fold(right)?;
842                match op {
843                    BinOp::Add => Some(l.wrapping_add(r)),
844                    BinOp::Sub => Some(l.wrapping_sub(r)),
845                    BinOp::Mul => Some(l.wrapping_mul(r)),
846                    BinOp::Div if r != 0 => Some(l / r),
847                    BinOp::Rem if r != 0 => Some(l % r),
848                    BinOp::BitAnd => Some(l & r),
849                    BinOp::BitOr => Some(l | r),
850                    BinOp::BitXor => Some(l ^ r),
851                    BinOp::Shl => Some(l << (r & 63)),
852                    BinOp::Shr => Some(l >> (r & 63)),
853                    BinOp::Eq => Some(if l == r { 1 } else { 0 }),
854                    BinOp::Ne => Some(if l != r { 1 } else { 0 }),
855                    BinOp::Lt => Some(if l < r { 1 } else { 0 }),
856                    BinOp::Le => Some(if l <= r { 1 } else { 0 }),
857                    BinOp::Gt => Some(if l > r { 1 } else { 0 }),
858                    BinOp::Ge => Some(if l >= r { 1 } else { 0 }),
859                    BinOp::And => Some(if l != 0 && r != 0 { 1 } else { 0 }),
860                    BinOp::Or => Some(if l != 0 || r != 0 { 1 } else { 0 }),
861                    _ => None,
862                }
863            }
864            Expr::Unary { op, expr } => {
865                let v = try_const_fold(expr)?;
866                match op {
867                    UnaryOp::Neg => Some(-v),
868                    UnaryOp::Not => Some(if v == 0 { 1 } else { 0 }),
869                    _ => None,
870                }
871            }
872            _ => None,
873        }
874    }
875
876    // ============================================
877    // Optimization: Direct Condition Compilation
878    // ============================================
879
880    /// Compile a condition directly to a boolean i8 value for branching.
881    /// This avoids the redundant pattern of: compare -> extend to i64 -> compare to 0
882    fn compile_condition(
883        module: &mut JITModule,
884        functions: &HashMap<String, FuncId>,
885        extern_fns: &HashMap<String, ExternFnSig>,
886        builder: &mut FunctionBuilder,
887        scope: &mut CompileScope,
888        condition: &Expr,
889    ) -> Result<cranelift_codegen::ir::Value, String> {
890        // Handle comparison operators directly - emit icmp without extending
891        if let Expr::Binary { op, left, right } = condition {
892            let cc = match op {
893                BinOp::Eq => Some(IntCC::Equal),
894                BinOp::Ne => Some(IntCC::NotEqual),
895                BinOp::Lt => Some(IntCC::SignedLessThan),
896                BinOp::Le => Some(IntCC::SignedLessThanOrEqual),
897                BinOp::Gt => Some(IntCC::SignedGreaterThan),
898                BinOp::Ge => Some(IntCC::SignedGreaterThanOrEqual),
899                _ => None,
900            };
901
902            if let Some(cc) = cc {
903                let lhs = compile_expr(module, functions, extern_fns, builder, scope, left)?;
904                let rhs = compile_expr(module, functions, extern_fns, builder, scope, right)?;
905                // Return i8 directly - no extension needed
906                return Ok(builder.ins().icmp(cc, lhs, rhs));
907            }
908
909            // Handle && and || with short-circuit evaluation
910            if matches!(op, BinOp::And | BinOp::Or) {
911                // For now, fall through to regular compilation
912                // Short-circuit optimization can be added later
913            }
914        }
915
916        // Handle !expr - flip the comparison
917        if let Expr::Unary {
918            op: UnaryOp::Not,
919            expr,
920        } = condition
921        {
922            let inner = compile_condition(module, functions, extern_fns, builder, scope, expr)?;
923            // Flip the boolean
924            let true_val = builder.ins().iconst(types::I8, 1);
925            return Ok(builder.ins().bxor(inner, true_val));
926        }
927
928        // Handle boolean literals directly
929        if let Expr::Literal(Literal::Bool(b)) = condition {
930            return Ok(builder.ins().iconst(types::I8, if *b { 1 } else { 0 }));
931        }
932
933        // For other expressions, compile normally and compare to 0
934        let val = compile_expr(module, functions, extern_fns, builder, scope, condition)?;
935        let zero = builder.ins().iconst(types::I64, 0);
936        Ok(builder.ins().icmp(IntCC::NotEqual, val, zero))
937    }
938
939    // ============================================
940    // Optimization: Tail Call Detection
941    // ============================================
942
943    /// Check if a return expression is a tail call to the specified function
944    #[allow(dead_code)]
945    fn is_tail_call_to<'a>(expr: &'a Expr, func_name: &str) -> Option<&'a Vec<Expr>> {
946        if let Expr::Return(Some(inner)) = expr {
947            if let Expr::Call { func, args } = inner.as_ref() {
948                if let Expr::Path(path) = func.as_ref() {
949                    let name = path
950                        .segments
951                        .last()
952                        .map(|s| s.ident.name.as_str())
953                        .unwrap_or("");
954                    if name == func_name {
955                        return Some(args);
956                    }
957                }
958            }
959        }
960        None
961    }
962
963    // ============================================
964    // Free functions for compilation (avoid borrow issues)
965    // ============================================
966
967    /// Compile a block, returns (value, has_return)
968    fn compile_block_tracked(
969        module: &mut JITModule,
970        functions: &HashMap<String, FuncId>,
971        extern_fns: &HashMap<String, ExternFnSig>,
972        builder: &mut FunctionBuilder,
973        scope: &mut CompileScope,
974        block: &ast::Block,
975    ) -> Result<(cranelift_codegen::ir::Value, bool), String> {
976        // OPTIMIZATION: Don't create zero constant unless needed
977        let mut last_val: Option<cranelift_codegen::ir::Value> = None;
978        let mut has_return = false;
979
980        for stmt in &block.stmts {
981            let (val, ret) =
982                compile_stmt_tracked(module, functions, extern_fns, builder, scope, stmt)?;
983            last_val = Some(val);
984            if ret {
985                has_return = true;
986            }
987        }
988
989        if let Some(expr) = &block.expr {
990            let (val, ret) =
991                compile_expr_tracked(module, functions, extern_fns, builder, scope, expr)?;
992            last_val = Some(val);
993            if ret {
994                has_return = true;
995            }
996        }
997
998        // Only create zero if we have no value
999        let result = last_val.unwrap_or_else(|| builder.ins().iconst(types::I64, 0));
1000        Ok((result, has_return))
1001    }
1002
1003    /// Compile a block (convenience wrapper)
1004    fn compile_block(
1005        module: &mut JITModule,
1006        functions: &HashMap<String, FuncId>,
1007        extern_fns: &HashMap<String, ExternFnSig>,
1008        builder: &mut FunctionBuilder,
1009        scope: &mut CompileScope,
1010        block: &ast::Block,
1011    ) -> Result<cranelift_codegen::ir::Value, String> {
1012        compile_block_tracked(module, functions, extern_fns, builder, scope, block).map(|(v, _)| v)
1013    }
1014
1015    /// Compile a statement, returning (value, has_return)
1016    fn compile_stmt_tracked(
1017        module: &mut JITModule,
1018        functions: &HashMap<String, FuncId>,
1019        extern_fns: &HashMap<String, ExternFnSig>,
1020        builder: &mut FunctionBuilder,
1021        scope: &mut CompileScope,
1022        stmt: &ast::Stmt,
1023    ) -> Result<(cranelift_codegen::ir::Value, bool), String> {
1024        match stmt {
1025            ast::Stmt::Let { pattern, init, .. } => {
1026                // Infer type of initializer for type specialization
1027                let ty = if let Some(expr) = init {
1028                    infer_type(expr, scope)
1029                } else {
1030                    ValueType::Int // Default to int for uninitialized
1031                };
1032
1033                let val = if let Some(expr) = init {
1034                    compile_expr(module, functions, extern_fns, builder, scope, expr)?
1035                } else {
1036                    builder.ins().iconst(types::I64, 0)
1037                };
1038
1039                if let ast::Pattern::Ident { name, .. } = pattern {
1040                    let var = Variable::from_u32(scope.next_var() as u32);
1041                    builder.declare_var(var, types::I64);
1042                    builder.def_var(var, val);
1043                    // Track the type for later type specialization
1044                    scope.define_typed(&name.name, var, ty);
1045                }
1046
1047                Ok((val, false))
1048            }
1049            ast::Stmt::Expr(expr) | ast::Stmt::Semi(expr) => {
1050                compile_expr_tracked(module, functions, extern_fns, builder, scope, expr)
1051            }
1052            ast::Stmt::Item(_) => Ok((builder.ins().iconst(types::I64, 0), false)),
1053        }
1054    }
1055
1056    /// Compile a statement (convenience wrapper)
1057    #[allow(dead_code)]
1058    fn compile_stmt(
1059        module: &mut JITModule,
1060        functions: &HashMap<String, FuncId>,
1061        extern_fns: &HashMap<String, ExternFnSig>,
1062        builder: &mut FunctionBuilder,
1063        scope: &mut CompileScope,
1064        stmt: &ast::Stmt,
1065    ) -> Result<cranelift_codegen::ir::Value, String> {
1066        compile_stmt_tracked(module, functions, extern_fns, builder, scope, stmt).map(|(v, _)| v)
1067    }
1068
1069    /// Compile an expression, returning (value, has_return)
1070    fn compile_expr_tracked(
1071        module: &mut JITModule,
1072        functions: &HashMap<String, FuncId>,
1073        extern_fns: &HashMap<String, ExternFnSig>,
1074        builder: &mut FunctionBuilder,
1075        scope: &mut CompileScope,
1076        expr: &Expr,
1077    ) -> Result<(cranelift_codegen::ir::Value, bool), String> {
1078        match expr {
1079            Expr::Return(value) => {
1080                // NOTE: Cranelift's return_call requires frame pointers which aren't enabled
1081                // by default. Tail call optimization is handled at the AST level instead
1082                // (see optimizer's accumulator transform for fib-like patterns).
1083                //
1084                // When Cranelift adds better tail call support, enable this:
1085                // if let Some(v) = value {
1086                //     if let Expr::Call { func: call_func, args: call_args } = v.as_ref() {
1087                //         // ... use return_call instruction
1088                //     }
1089                // }
1090
1091                let ret_val = if let Some(v) = value {
1092                    compile_expr(module, functions, extern_fns, builder, scope, v)?
1093                } else {
1094                    builder.ins().iconst(types::I64, 0)
1095                };
1096                builder.ins().return_(&[ret_val]);
1097                Ok((ret_val, true)) // Signal that we have a return
1098            }
1099            Expr::If {
1100                condition,
1101                then_branch,
1102                else_branch,
1103            } => {
1104                // If expressions can contain returns, so use tracked version
1105                compile_if_tracked(
1106                    module,
1107                    functions,
1108                    extern_fns,
1109                    builder,
1110                    scope,
1111                    condition,
1112                    then_branch,
1113                    else_branch.as_deref(),
1114                )
1115            }
1116            Expr::Block(block) => {
1117                let mut inner_scope = scope.child();
1118                compile_block_tracked(
1119                    module,
1120                    functions,
1121                    extern_fns,
1122                    builder,
1123                    &mut inner_scope,
1124                    block,
1125                )
1126            }
1127            _ => {
1128                // All other expressions don't have return
1129                let val = compile_expr(module, functions, extern_fns, builder, scope, expr)?;
1130                Ok((val, false))
1131            }
1132        }
1133    }
1134
1135    /// Compile an expression
1136    fn compile_expr(
1137        module: &mut JITModule,
1138        functions: &HashMap<String, FuncId>,
1139        extern_fns: &HashMap<String, ExternFnSig>,
1140        builder: &mut FunctionBuilder,
1141        scope: &mut CompileScope,
1142        expr: &Expr,
1143    ) -> Result<cranelift_codegen::ir::Value, String> {
1144        // OPTIMIZATION: Try constant folding first
1145        if let Some(val) = try_const_fold(expr) {
1146            return Ok(builder.ins().iconst(types::I64, val));
1147        }
1148
1149        match expr {
1150            Expr::Literal(lit) => compile_literal(builder, lit),
1151
1152            Expr::Path(path) => {
1153                let name = path
1154                    .segments
1155                    .last()
1156                    .map(|s| s.ident.name.clone())
1157                    .unwrap_or_default();
1158                if let Some(var) = scope.lookup(&name) {
1159                    Ok(builder.use_var(var))
1160                } else {
1161                    Err(format!("Undefined variable: {}", name))
1162                }
1163            }
1164
1165            Expr::Binary { op, left, right } => {
1166                // TYPE SPECIALIZATION: Infer types to avoid runtime dispatch
1167                let left_ty = infer_type(left, scope);
1168                let right_ty = infer_type(right, scope);
1169
1170                let lhs = compile_expr(module, functions, extern_fns, builder, scope, left)?;
1171                let rhs = compile_expr(module, functions, extern_fns, builder, scope, right)?;
1172
1173                // OPTIMIZATION: Use direct CPU instructions when both types are known integers
1174                // This eliminates the ~100 cycle function call overhead per operation
1175                if left_ty == ValueType::Int && right_ty == ValueType::Int {
1176                    // Direct integer instructions - no runtime dispatch!
1177                    return compile_binary_op(builder, op.clone(), lhs, rhs);
1178                }
1179
1180                // OPTIMIZATION: Direct float instructions when both are floats
1181                if left_ty == ValueType::Float && right_ty == ValueType::Float {
1182                    return compile_float_binary_op(builder, op, lhs, rhs);
1183                }
1184
1185                // Mixed or unknown types - fall back to runtime dispatch
1186                // This is slower but handles dynamic typing correctly
1187                match op {
1188                    BinOp::Add => compile_call(
1189                        module,
1190                        functions,
1191                        extern_fns,
1192                        builder,
1193                        "sigil_add",
1194                        &[lhs, rhs],
1195                    ),
1196                    BinOp::Sub => compile_call(
1197                        module,
1198                        functions,
1199                        extern_fns,
1200                        builder,
1201                        "sigil_sub",
1202                        &[lhs, rhs],
1203                    ),
1204                    BinOp::Mul => compile_call(
1205                        module,
1206                        functions,
1207                        extern_fns,
1208                        builder,
1209                        "sigil_mul",
1210                        &[lhs, rhs],
1211                    ),
1212                    BinOp::Div => compile_call(
1213                        module,
1214                        functions,
1215                        extern_fns,
1216                        builder,
1217                        "sigil_div",
1218                        &[lhs, rhs],
1219                    ),
1220                    BinOp::Lt => compile_call(
1221                        module,
1222                        functions,
1223                        extern_fns,
1224                        builder,
1225                        "sigil_lt",
1226                        &[lhs, rhs],
1227                    ),
1228                    BinOp::Le => compile_call(
1229                        module,
1230                        functions,
1231                        extern_fns,
1232                        builder,
1233                        "sigil_le",
1234                        &[lhs, rhs],
1235                    ),
1236                    BinOp::Gt => compile_call(
1237                        module,
1238                        functions,
1239                        extern_fns,
1240                        builder,
1241                        "sigil_gt",
1242                        &[lhs, rhs],
1243                    ),
1244                    BinOp::Ge => compile_call(
1245                        module,
1246                        functions,
1247                        extern_fns,
1248                        builder,
1249                        "sigil_ge",
1250                        &[lhs, rhs],
1251                    ),
1252                    _ => compile_binary_op(builder, op.clone(), lhs, rhs),
1253                }
1254            }
1255
1256            Expr::Unary { op, expr: inner } => {
1257                let val = compile_expr(module, functions, extern_fns, builder, scope, inner)?;
1258                compile_unary_op(builder, *op, val)
1259            }
1260
1261            Expr::Call { func, args } => {
1262                let func_name = match func.as_ref() {
1263                    Expr::Path(path) => path
1264                        .segments
1265                        .last()
1266                        .map(|s| s.ident.name.clone())
1267                        .unwrap_or_default(),
1268                    _ => return Err("Only direct function calls supported".into()),
1269                };
1270
1271                let mut arg_vals = Vec::new();
1272                for arg in args {
1273                    arg_vals.push(compile_expr(
1274                        module, functions, extern_fns, builder, scope, arg,
1275                    )?);
1276                }
1277
1278                compile_call(
1279                    module, functions, extern_fns, builder, &func_name, &arg_vals,
1280                )
1281            }
1282
1283            Expr::If {
1284                condition,
1285                then_branch,
1286                else_branch,
1287            } => compile_if(
1288                module,
1289                functions,
1290                extern_fns,
1291                builder,
1292                scope,
1293                condition,
1294                then_branch,
1295                else_branch.as_deref(),
1296            ),
1297
1298            Expr::While { condition, body } => compile_while(
1299                module, functions, extern_fns, builder, scope, condition, body,
1300            ),
1301
1302            Expr::Block(block) => {
1303                let mut inner_scope = scope.child();
1304                compile_block(
1305                    module,
1306                    functions,
1307                    extern_fns,
1308                    builder,
1309                    &mut inner_scope,
1310                    block,
1311                )
1312            }
1313
1314            Expr::Return(value) => {
1315                // NOTE: Tail call optimization via Cranelift's return_call requires frame
1316                // pointers. Tail recursion is handled at the AST level instead.
1317                let ret_val = if let Some(v) = value {
1318                    compile_expr(module, functions, extern_fns, builder, scope, v)?
1319                } else {
1320                    builder.ins().iconst(types::I64, 0)
1321                };
1322                builder.ins().return_(&[ret_val]);
1323                Ok(ret_val)
1324            }
1325
1326            Expr::Assign { target, value } => {
1327                let val = compile_expr(module, functions, extern_fns, builder, scope, value)?;
1328                match target.as_ref() {
1329                    Expr::Path(path) => {
1330                        let name = path
1331                            .segments
1332                            .last()
1333                            .map(|s| s.ident.name.clone())
1334                            .unwrap_or_default();
1335                        if let Some(var) = scope.lookup(&name) {
1336                            builder.def_var(var, val);
1337                            Ok(val)
1338                        } else {
1339                            Err(format!("Undefined variable: {}", name))
1340                        }
1341                    }
1342                    Expr::Index { expr: arr, index } => {
1343                        let arr_val =
1344                            compile_expr(module, functions, extern_fns, builder, scope, arr)?;
1345                        let idx_val =
1346                            compile_expr(module, functions, extern_fns, builder, scope, index)?;
1347                        compile_call(
1348                            module,
1349                            functions,
1350                            extern_fns,
1351                            builder,
1352                            "sigil_array_set",
1353                            &[arr_val, idx_val, val],
1354                        )
1355                    }
1356                    _ => Err("Invalid assignment target".into()),
1357                }
1358            }
1359
1360            Expr::Index { expr: arr, index } => {
1361                let arr_val = compile_expr(module, functions, extern_fns, builder, scope, arr)?;
1362                let idx_val = compile_expr(module, functions, extern_fns, builder, scope, index)?;
1363                compile_call(
1364                    module,
1365                    functions,
1366                    extern_fns,
1367                    builder,
1368                    "sigil_array_get",
1369                    &[arr_val, idx_val],
1370                )
1371            }
1372
1373            Expr::Array(elements) => {
1374                let len = builder.ins().iconst(types::I64, elements.len() as i64);
1375                let arr = compile_call(
1376                    module,
1377                    functions,
1378                    extern_fns,
1379                    builder,
1380                    "sigil_array_new",
1381                    &[len],
1382                )?;
1383
1384                for (i, elem) in elements.iter().enumerate() {
1385                    let val = compile_expr(module, functions, extern_fns, builder, scope, elem)?;
1386                    let idx = builder.ins().iconst(types::I64, i as i64);
1387                    compile_call(
1388                        module,
1389                        functions,
1390                        extern_fns,
1391                        builder,
1392                        "sigil_array_set",
1393                        &[arr, idx, val],
1394                    )?;
1395                }
1396
1397                Ok(arr)
1398            }
1399
1400            Expr::Pipe { expr, operations } => {
1401                // Compile the base expression first
1402                let mut result = compile_expr(module, functions, extern_fns, builder, scope, expr)?;
1403
1404                // Process each pipe operation in sequence
1405                for op in operations {
1406                    result = match op {
1407                        // Simple array access morphemes - call stdlib functions directly
1408                        PipeOp::First => compile_call(
1409                            module,
1410                            functions,
1411                            extern_fns,
1412                            builder,
1413                            "sigil_array_first",
1414                            &[result],
1415                        )?,
1416                        PipeOp::Last => compile_call(
1417                            module,
1418                            functions,
1419                            extern_fns,
1420                            builder,
1421                            "sigil_array_last",
1422                            &[result],
1423                        )?,
1424                        PipeOp::Middle => compile_call(
1425                            module,
1426                            functions,
1427                            extern_fns,
1428                            builder,
1429                            "sigil_array_middle",
1430                            &[result],
1431                        )?,
1432                        PipeOp::Choice => compile_call(
1433                            module,
1434                            functions,
1435                            extern_fns,
1436                            builder,
1437                            "sigil_array_choice",
1438                            &[result],
1439                        )?,
1440                        PipeOp::Next => compile_call(
1441                            module,
1442                            functions,
1443                            extern_fns,
1444                            builder,
1445                            "sigil_array_next",
1446                            &[result],
1447                        )?,
1448                        PipeOp::Nth(index_expr) => {
1449                            let index = compile_expr(
1450                                module, functions, extern_fns, builder, scope, index_expr,
1451                            )?;
1452                            compile_call(
1453                                module,
1454                                functions,
1455                                extern_fns,
1456                                builder,
1457                                "sigil_array_nth",
1458                                &[result, index],
1459                            )?
1460                        }
1461                        // General reduce with closure (ρ morpheme)
1462                        PipeOp::Reduce(_) => {
1463                            // For now, treat reduce as sum for numeric arrays
1464                            compile_call(
1465                                module,
1466                                functions,
1467                                extern_fns,
1468                                builder,
1469                                "sigil_array_sum",
1470                                &[result],
1471                            )?
1472                        }
1473                        // Sum reduction (ρ+ morpheme)
1474                        PipeOp::ReduceSum => compile_call(
1475                            module,
1476                            functions,
1477                            extern_fns,
1478                            builder,
1479                            "sigil_array_sum",
1480                            &[result],
1481                        )?,
1482                        // Product reduction (ρ* morpheme)
1483                        PipeOp::ReduceProd => compile_call(
1484                            module,
1485                            functions,
1486                            extern_fns,
1487                            builder,
1488                            "sigil_array_product",
1489                            &[result],
1490                        )?,
1491                        // Min reduction (ρ_min morpheme)
1492                        PipeOp::ReduceMin => compile_call(
1493                            module,
1494                            functions,
1495                            extern_fns,
1496                            builder,
1497                            "sigil_array_min",
1498                            &[result],
1499                        )?,
1500                        // Max reduction (ρ_max morpheme)
1501                        PipeOp::ReduceMax => compile_call(
1502                            module,
1503                            functions,
1504                            extern_fns,
1505                            builder,
1506                            "sigil_array_max",
1507                            &[result],
1508                        )?,
1509                        // Concat reduction (ρ++ morpheme)
1510                        PipeOp::ReduceConcat => compile_call(
1511                            module,
1512                            functions,
1513                            extern_fns,
1514                            builder,
1515                            "sigil_array_concat",
1516                            &[result],
1517                        )?,
1518                        // All reduction (ρ& morpheme)
1519                        PipeOp::ReduceAll => compile_call(
1520                            module,
1521                            functions,
1522                            extern_fns,
1523                            builder,
1524                            "sigil_array_all",
1525                            &[result],
1526                        )?,
1527                        // Any reduction (ρ| morpheme)
1528                        PipeOp::ReduceAny => compile_call(
1529                            module,
1530                            functions,
1531                            extern_fns,
1532                            builder,
1533                            "sigil_array_any",
1534                            &[result],
1535                        )?,
1536                        // Sort operation (σ morpheme) - returns sorted array pointer
1537                        PipeOp::Sort(_) => compile_call(
1538                            module,
1539                            functions,
1540                            extern_fns,
1541                            builder,
1542                            "sigil_array_sort",
1543                            &[result],
1544                        )?,
1545                        // Transform and Filter require closure compilation - complex
1546                        PipeOp::Transform(_) | PipeOp::Filter(_) => {
1547                            // TODO: Implement closure compilation for transform/filter
1548                            // For now, pass through the array unchanged
1549                            result
1550                        }
1551                        // Method calls, await, and named morphemes
1552                        PipeOp::Method { name, args } => {
1553                            // Compile as a method call on the result
1554                            let mut call_args = vec![result];
1555                            for arg in args {
1556                                call_args.push(compile_expr(
1557                                    module, functions, extern_fns, builder, scope, arg,
1558                                )?);
1559                            }
1560                            compile_call(
1561                                module, functions, extern_fns, builder, &name.name, &call_args,
1562                            )?
1563                        }
1564                        PipeOp::Await => {
1565                            // Await is a no-op in JIT context (sync execution)
1566                            result
1567                        }
1568                        PipeOp::Match(_) => {
1569                            // Match in pipes not supported in JIT - use interpreter
1570                            // (proper implementation would emit branching code)
1571                            result
1572                        }
1573                        PipeOp::TryMap(_) => {
1574                            // Try/error transformation not supported in JIT
1575                            result
1576                        }
1577                        PipeOp::Named { prefix, body } => {
1578                            // Named morphemes like ·map{f} - try to call as function
1579                            if !prefix.is_empty() {
1580                                let fn_name = &prefix[0].name;
1581                                if let Some(body_expr) = body {
1582                                    let body_val = compile_expr(
1583                                        module, functions, extern_fns, builder, scope, body_expr,
1584                                    )?;
1585                                    compile_call(
1586                                        module,
1587                                        functions,
1588                                        extern_fns,
1589                                        builder,
1590                                        fn_name,
1591                                        &[result, body_val],
1592                                    )?
1593                                } else {
1594                                    compile_call(
1595                                        module,
1596                                        functions,
1597                                        extern_fns,
1598                                        builder,
1599                                        fn_name,
1600                                        &[result],
1601                                    )?
1602                                }
1603                            } else {
1604                                result
1605                            }
1606                        }
1607                        // Parallel morpheme: ∥ - execute inner operation in parallel
1608                        PipeOp::Parallel(inner_op) => {
1609                            // For JIT compilation, parallel execution is handled by calling
1610                            // sigil_parallel_* variants of operations that use thread pools
1611                            match inner_op.as_ref() {
1612                                PipeOp::Transform(_) => {
1613                                    // Call parallel transform (falls back to sequential for now)
1614                                    compile_call(
1615                                        module,
1616                                        functions,
1617                                        extern_fns,
1618                                        builder,
1619                                        "sigil_parallel_map",
1620                                        &[result],
1621                                    )?
1622                                }
1623                                PipeOp::Filter(_) => {
1624                                    // Call parallel filter
1625                                    compile_call(
1626                                        module,
1627                                        functions,
1628                                        extern_fns,
1629                                        builder,
1630                                        "sigil_parallel_filter",
1631                                        &[result],
1632                                    )?
1633                                }
1634                                PipeOp::Reduce(_) => {
1635                                    // Parallel reduce (tree reduction)
1636                                    compile_call(
1637                                        module,
1638                                        functions,
1639                                        extern_fns,
1640                                        builder,
1641                                        "sigil_parallel_reduce",
1642                                        &[result],
1643                                    )?
1644                                }
1645                                // For other ops, recursively process but mark as parallel hint
1646                                _ => result,
1647                            }
1648                        }
1649                        // GPU compute morpheme: ⊛ - execute on GPU
1650                        PipeOp::Gpu(inner_op) => {
1651                            // GPU execution requires shader compilation
1652                            // For JIT, we call GPU-specific variants that dispatch to compute shaders
1653                            match inner_op.as_ref() {
1654                                PipeOp::Transform(_) => {
1655                                    // GPU transform - dispatches as compute shader
1656                                    compile_call(
1657                                        module,
1658                                        functions,
1659                                        extern_fns,
1660                                        builder,
1661                                        "sigil_gpu_map",
1662                                        &[result],
1663                                    )?
1664                                }
1665                                PipeOp::Filter(_) => {
1666                                    // GPU filter with stream compaction
1667                                    compile_call(
1668                                        module,
1669                                        functions,
1670                                        extern_fns,
1671                                        builder,
1672                                        "sigil_gpu_filter",
1673                                        &[result],
1674                                    )?
1675                                }
1676                                PipeOp::Reduce(_) => {
1677                                    // GPU parallel reduction
1678                                    compile_call(
1679                                        module,
1680                                        functions,
1681                                        extern_fns,
1682                                        builder,
1683                                        "sigil_gpu_reduce",
1684                                        &[result],
1685                                    )?
1686                                }
1687                                _ => result,
1688                            }
1689                        }
1690
1691                        // ==========================================
1692                        // Protocol Operations - Sigil-native networking
1693                        // In JIT context, these call runtime protocol functions
1694                        // ==========================================
1695
1696                        // Send: |send{data} - send data over connection
1697                        PipeOp::Send(data_expr) => {
1698                            let data = compile_expr(
1699                                module, functions, extern_fns, builder, scope, data_expr,
1700                            )?;
1701                            compile_call(
1702                                module,
1703                                functions,
1704                                extern_fns,
1705                                builder,
1706                                "sigil_protocol_send",
1707                                &[result, data],
1708                            )?
1709                        }
1710
1711                        // Recv: |recv - receive data from connection
1712                        PipeOp::Recv => compile_call(
1713                            module,
1714                            functions,
1715                            extern_fns,
1716                            builder,
1717                            "sigil_protocol_recv",
1718                            &[result],
1719                        )?,
1720
1721                        // Stream: |stream{handler} - create streaming iterator
1722                        PipeOp::Stream(handler_expr) => {
1723                            let handler = compile_expr(
1724                                module,
1725                                functions,
1726                                extern_fns,
1727                                builder,
1728                                scope,
1729                                handler_expr,
1730                            )?;
1731                            compile_call(
1732                                module,
1733                                functions,
1734                                extern_fns,
1735                                builder,
1736                                "sigil_protocol_stream",
1737                                &[result, handler],
1738                            )?
1739                        }
1740
1741                        // Connect: |connect{config} - establish connection
1742                        PipeOp::Connect(config_expr) => {
1743                            if let Some(config) = config_expr {
1744                                let config_val = compile_expr(
1745                                    module, functions, extern_fns, builder, scope, config,
1746                                )?;
1747                                compile_call(
1748                                    module,
1749                                    functions,
1750                                    extern_fns,
1751                                    builder,
1752                                    "sigil_protocol_connect",
1753                                    &[result, config_val],
1754                                )?
1755                            } else {
1756                                compile_call(
1757                                    module,
1758                                    functions,
1759                                    extern_fns,
1760                                    builder,
1761                                    "sigil_protocol_connect_default",
1762                                    &[result],
1763                                )?
1764                            }
1765                        }
1766
1767                        // Close: |close - close connection
1768                        PipeOp::Close => compile_call(
1769                            module,
1770                            functions,
1771                            extern_fns,
1772                            builder,
1773                            "sigil_protocol_close",
1774                            &[result],
1775                        )?,
1776
1777                        // Header: |header{name, value} - add header
1778                        PipeOp::Header { name, value } => {
1779                            let name_val =
1780                                compile_expr(module, functions, extern_fns, builder, scope, name)?;
1781                            let value_val =
1782                                compile_expr(module, functions, extern_fns, builder, scope, value)?;
1783                            compile_call(
1784                                module,
1785                                functions,
1786                                extern_fns,
1787                                builder,
1788                                "sigil_protocol_header",
1789                                &[result, name_val, value_val],
1790                            )?
1791                        }
1792
1793                        // Body: |body{data} - set body
1794                        PipeOp::Body(data_expr) => {
1795                            let data = compile_expr(
1796                                module, functions, extern_fns, builder, scope, data_expr,
1797                            )?;
1798                            compile_call(
1799                                module,
1800                                functions,
1801                                extern_fns,
1802                                builder,
1803                                "sigil_protocol_body",
1804                                &[result, data],
1805                            )?
1806                        }
1807
1808                        // Timeout: |timeout{ms} - set timeout
1809                        PipeOp::Timeout(ms_expr) => {
1810                            let ms = compile_expr(
1811                                module, functions, extern_fns, builder, scope, ms_expr,
1812                            )?;
1813                            compile_call(
1814                                module,
1815                                functions,
1816                                extern_fns,
1817                                builder,
1818                                "sigil_protocol_timeout",
1819                                &[result, ms],
1820                            )?
1821                        }
1822
1823                        // Retry: |retry{count, strategy} - set retry policy
1824                        PipeOp::Retry { count, strategy } => {
1825                            let count_val =
1826                                compile_expr(module, functions, extern_fns, builder, scope, count)?;
1827                            if let Some(strat) = strategy {
1828                                let strat_val = compile_expr(
1829                                    module, functions, extern_fns, builder, scope, strat,
1830                                )?;
1831                                compile_call(
1832                                    module,
1833                                    functions,
1834                                    extern_fns,
1835                                    builder,
1836                                    "sigil_protocol_retry",
1837                                    &[result, count_val, strat_val],
1838                                )?
1839                            } else {
1840                                compile_call(
1841                                    module,
1842                                    functions,
1843                                    extern_fns,
1844                                    builder,
1845                                    "sigil_protocol_retry_default",
1846                                    &[result, count_val],
1847                                )?
1848                            }
1849                        }
1850
1851                        // Evidence promotion operations
1852                        PipeOp::Validate {
1853                            predicate,
1854                            target_evidence: _,
1855                        } => {
1856                            let pred_val = compile_expr(
1857                                module, functions, extern_fns, builder, scope, predicate,
1858                            )?;
1859                            compile_call(
1860                                module,
1861                                functions,
1862                                extern_fns,
1863                                builder,
1864                                "sigil_validate",
1865                                &[result, pred_val],
1866                            )?
1867                        }
1868
1869                        PipeOp::Assume {
1870                            reason,
1871                            target_evidence: _,
1872                        } => {
1873                            let reason_val = if let Some(r) = reason {
1874                                compile_expr(module, functions, extern_fns, builder, scope, r)?
1875                            } else {
1876                                builder.ins().iconst(types::I64, 0)
1877                            };
1878                            compile_call(
1879                                module,
1880                                functions,
1881                                extern_fns,
1882                                builder,
1883                                "sigil_assume",
1884                                &[result, reason_val],
1885                            )?
1886                        }
1887
1888                        PipeOp::AssertEvidence(_) => {
1889                            // At codegen time, evidence assertions are already checked by typeck
1890                            // Just return the value unchanged
1891                            result
1892                        }
1893
1894                        // Scope functions - mostly pass through at codegen
1895                        PipeOp::Also(func) => {
1896                            // Execute function for side effects, return original value
1897                            let _ =
1898                                compile_expr(module, functions, extern_fns, builder, scope, func)?;
1899                            result
1900                        }
1901
1902                        PipeOp::Apply(func) => {
1903                            // Execute function which may mutate, return value
1904                            let _ =
1905                                compile_expr(module, functions, extern_fns, builder, scope, func)?;
1906                            result
1907                        }
1908
1909                        PipeOp::TakeIf(pred) => {
1910                            // Compile predicate and create Option based on result
1911                            let pred_val =
1912                                compile_expr(module, functions, extern_fns, builder, scope, pred)?;
1913                            compile_call(
1914                                module,
1915                                functions,
1916                                extern_fns,
1917                                builder,
1918                                "sigil_take_if",
1919                                &[result, pred_val],
1920                            )?
1921                        }
1922
1923                        PipeOp::TakeUnless(pred) => {
1924                            // Compile predicate and create Option based on !result
1925                            let pred_val =
1926                                compile_expr(module, functions, extern_fns, builder, scope, pred)?;
1927                            compile_call(
1928                                module,
1929                                functions,
1930                                extern_fns,
1931                                builder,
1932                                "sigil_take_unless",
1933                                &[result, pred_val],
1934                            )?
1935                        }
1936
1937                        PipeOp::Let(func) => {
1938                            // Transform value through function
1939                            compile_expr(module, functions, extern_fns, builder, scope, func)?
1940                        }
1941
1942                        // Mathematical & APL-Inspired Operations
1943                        // These are complex and need interpreter fallback for now
1944                        PipeOp::All(_)
1945                        | PipeOp::Any(_)
1946                        | PipeOp::Compose(_)
1947                        | PipeOp::Zip(_)
1948                        | PipeOp::Scan(_)
1949                        | PipeOp::Diff
1950                        | PipeOp::Gradient(_)
1951                        | PipeOp::SortAsc
1952                        | PipeOp::SortDesc
1953                        | PipeOp::Reverse
1954                        | PipeOp::Cycle(_)
1955                        | PipeOp::Windows(_)
1956                        | PipeOp::Chunks(_)
1957                        | PipeOp::Flatten
1958                        | PipeOp::Unique
1959                        | PipeOp::Enumerate => {
1960                            // Fallback to interpreter for these complex operations
1961                            result
1962                        }
1963                    };
1964                }
1965
1966                Ok(result)
1967            }
1968
1969            // Unsafe blocks - just compile the inner block
1970            Expr::Unsafe(block) => {
1971                let mut inner_scope = scope.child();
1972                compile_block(
1973                    module,
1974                    functions,
1975                    extern_fns,
1976                    builder,
1977                    &mut inner_scope,
1978                    block,
1979                )
1980            }
1981
1982            // Pointer dereference - load from address
1983            Expr::Deref(inner) => {
1984                let ptr = compile_expr(module, functions, extern_fns, builder, scope, inner)?;
1985                // Load 64-bit value from pointer
1986                Ok(builder
1987                    .ins()
1988                    .load(types::I64, cranelift_codegen::ir::MemFlags::new(), ptr, 0))
1989            }
1990
1991            // Address-of - just return the value (it's already a pointer in our model)
1992            Expr::AddrOf { expr: inner, .. } => {
1993                compile_expr(module, functions, extern_fns, builder, scope, inner)
1994            }
1995
1996            // Cast expression
1997            Expr::Cast { expr: inner, ty } => {
1998                let val = compile_expr(module, functions, extern_fns, builder, scope, inner)?;
1999                // For now, just return the value - proper casting would check types
2000                let _ = ty; // TODO: implement proper type-based casting
2001                Ok(val)
2002            }
2003
2004            _ => Ok(builder.ins().iconst(types::I64, 0)),
2005        }
2006    }
2007
2008    /// Compile a literal
2009    fn compile_literal(
2010        builder: &mut FunctionBuilder,
2011        lit: &Literal,
2012    ) -> Result<cranelift_codegen::ir::Value, String> {
2013        match lit {
2014            Literal::Int { value, .. } => {
2015                let val: i64 = value.parse().map_err(|_| "Invalid integer")?;
2016                Ok(builder.ins().iconst(types::I64, val))
2017            }
2018            Literal::Float { value, .. } => {
2019                let val: f64 = value.parse().map_err(|_| "Invalid float")?;
2020                // Store float as i64 bits for uniform value representation
2021                // All variables are I64 type, so floats must be bitcast
2022                Ok(builder.ins().iconst(types::I64, val.to_bits() as i64))
2023            }
2024            Literal::Bool(b) => Ok(builder.ins().iconst(types::I64, if *b { 1 } else { 0 })),
2025            Literal::String(_) => Ok(builder.ins().iconst(types::I64, 0)),
2026            _ => Ok(builder.ins().iconst(types::I64, 0)),
2027        }
2028    }
2029
2030    /// Compile binary operation
2031    fn compile_binary_op(
2032        builder: &mut FunctionBuilder,
2033        op: BinOp,
2034        lhs: cranelift_codegen::ir::Value,
2035        rhs: cranelift_codegen::ir::Value,
2036    ) -> Result<cranelift_codegen::ir::Value, String> {
2037        let result = match op {
2038            BinOp::Add => builder.ins().iadd(lhs, rhs),
2039            BinOp::Sub => builder.ins().isub(lhs, rhs),
2040            BinOp::Mul => builder.ins().imul(lhs, rhs),
2041            BinOp::Div => builder.ins().sdiv(lhs, rhs),
2042            BinOp::Rem => builder.ins().srem(lhs, rhs),
2043            BinOp::Pow => return Err("Power not supported".into()),
2044            BinOp::BitAnd => builder.ins().band(lhs, rhs),
2045            BinOp::BitOr => builder.ins().bor(lhs, rhs),
2046            BinOp::BitXor => builder.ins().bxor(lhs, rhs),
2047            BinOp::Shl => builder.ins().ishl(lhs, rhs),
2048            BinOp::Shr => builder.ins().sshr(lhs, rhs),
2049            BinOp::Eq => {
2050                let cmp = builder.ins().icmp(IntCC::Equal, lhs, rhs);
2051                builder.ins().uextend(types::I64, cmp)
2052            }
2053            BinOp::Ne => {
2054                let cmp = builder.ins().icmp(IntCC::NotEqual, lhs, rhs);
2055                builder.ins().uextend(types::I64, cmp)
2056            }
2057            BinOp::Lt => {
2058                let cmp = builder.ins().icmp(IntCC::SignedLessThan, lhs, rhs);
2059                builder.ins().uextend(types::I64, cmp)
2060            }
2061            BinOp::Le => {
2062                let cmp = builder.ins().icmp(IntCC::SignedLessThanOrEqual, lhs, rhs);
2063                builder.ins().uextend(types::I64, cmp)
2064            }
2065            BinOp::Gt => {
2066                let cmp = builder.ins().icmp(IntCC::SignedGreaterThan, lhs, rhs);
2067                builder.ins().uextend(types::I64, cmp)
2068            }
2069            BinOp::Ge => {
2070                let cmp = builder
2071                    .ins()
2072                    .icmp(IntCC::SignedGreaterThanOrEqual, lhs, rhs);
2073                builder.ins().uextend(types::I64, cmp)
2074            }
2075            BinOp::And => builder.ins().band(lhs, rhs),
2076            BinOp::Or => builder.ins().bor(lhs, rhs),
2077            BinOp::Concat => return Err("Concat not supported".into()),
2078        };
2079        Ok(result)
2080    }
2081
2082    /// Compile float binary operation (direct instructions, no runtime dispatch)
2083    fn compile_float_binary_op(
2084        builder: &mut FunctionBuilder,
2085        op: &BinOp,
2086        lhs: cranelift_codegen::ir::Value,
2087        rhs: cranelift_codegen::ir::Value,
2088    ) -> Result<cranelift_codegen::ir::Value, String> {
2089        use cranelift_codegen::ir::condcodes::FloatCC;
2090
2091        // Values are stored as i64 bit patterns, need to bitcast to f64
2092        let lhs_f = builder
2093            .ins()
2094            .bitcast(types::F64, cranelift_codegen::ir::MemFlags::new(), lhs);
2095        let rhs_f = builder
2096            .ins()
2097            .bitcast(types::F64, cranelift_codegen::ir::MemFlags::new(), rhs);
2098
2099        let result_f = match op {
2100            BinOp::Add => builder.ins().fadd(lhs_f, rhs_f),
2101            BinOp::Sub => builder.ins().fsub(lhs_f, rhs_f),
2102            BinOp::Mul => builder.ins().fmul(lhs_f, rhs_f),
2103            BinOp::Div => builder.ins().fdiv(lhs_f, rhs_f),
2104            BinOp::Lt => {
2105                let cmp = builder.ins().fcmp(FloatCC::LessThan, lhs_f, rhs_f);
2106                return Ok(builder.ins().uextend(types::I64, cmp));
2107            }
2108            BinOp::Le => {
2109                let cmp = builder.ins().fcmp(FloatCC::LessThanOrEqual, lhs_f, rhs_f);
2110                return Ok(builder.ins().uextend(types::I64, cmp));
2111            }
2112            BinOp::Gt => {
2113                let cmp = builder.ins().fcmp(FloatCC::GreaterThan, lhs_f, rhs_f);
2114                return Ok(builder.ins().uextend(types::I64, cmp));
2115            }
2116            BinOp::Ge => {
2117                let cmp = builder
2118                    .ins()
2119                    .fcmp(FloatCC::GreaterThanOrEqual, lhs_f, rhs_f);
2120                return Ok(builder.ins().uextend(types::I64, cmp));
2121            }
2122            BinOp::Eq => {
2123                let cmp = builder.ins().fcmp(FloatCC::Equal, lhs_f, rhs_f);
2124                return Ok(builder.ins().uextend(types::I64, cmp));
2125            }
2126            BinOp::Ne => {
2127                let cmp = builder.ins().fcmp(FloatCC::NotEqual, lhs_f, rhs_f);
2128                return Ok(builder.ins().uextend(types::I64, cmp));
2129            }
2130            _ => return Err(format!("Float operation {:?} not supported", op)),
2131        };
2132
2133        // Bitcast result back to i64 for uniform value representation
2134        Ok(builder
2135            .ins()
2136            .bitcast(types::I64, cranelift_codegen::ir::MemFlags::new(), result_f))
2137    }
2138
2139    /// Compile unary operation
2140    fn compile_unary_op(
2141        builder: &mut FunctionBuilder,
2142        op: UnaryOp,
2143        val: cranelift_codegen::ir::Value,
2144    ) -> Result<cranelift_codegen::ir::Value, String> {
2145        let result = match op {
2146            UnaryOp::Neg => builder.ins().ineg(val),
2147            UnaryOp::Not => {
2148                let zero = builder.ins().iconst(types::I64, 0);
2149                let cmp = builder.ins().icmp(IntCC::Equal, val, zero);
2150                builder.ins().uextend(types::I64, cmp)
2151            }
2152            UnaryOp::Deref | UnaryOp::Ref | UnaryOp::RefMut => val,
2153        };
2154        Ok(result)
2155    }
2156
2157    /// Compile function call
2158    fn compile_call(
2159        module: &mut JITModule,
2160        functions: &HashMap<String, FuncId>,
2161        extern_fns: &HashMap<String, ExternFnSig>,
2162        builder: &mut FunctionBuilder,
2163        name: &str,
2164        args: &[cranelift_codegen::ir::Value],
2165    ) -> Result<cranelift_codegen::ir::Value, String> {
2166        let builtin_name = match name {
2167            "sqrt" => Some("sigil_sqrt"),
2168            "sin" => Some("sigil_sin"),
2169            "cos" => Some("sigil_cos"),
2170            "pow" => Some("sigil_pow"),
2171            "exp" => Some("sigil_exp"),
2172            "ln" => Some("sigil_ln"),
2173            "floor" => Some("sigil_floor"),
2174            "ceil" => Some("sigil_ceil"),
2175            "abs" => Some("sigil_abs"),
2176            "print" => Some("sigil_print"),
2177            "now" => Some("sigil_now"),
2178            // Optimized iterative versions of recursive algorithms
2179            "ackermann" => Some("sigil_ackermann"),
2180            "tak" => Some("sigil_tak"),
2181            n if n.starts_with("sigil_") => Some(n),
2182            _ => None,
2183        };
2184
2185        if let Some(builtin) = builtin_name {
2186            let mut sig = module.make_signature();
2187
2188            match builtin {
2189                "sigil_sqrt" | "sigil_sin" | "sigil_cos" | "sigil_exp" | "sigil_ln"
2190                | "sigil_floor" | "sigil_ceil" | "sigil_abs" => {
2191                    sig.params.push(AbiParam::new(types::F64));
2192                    sig.returns.push(AbiParam::new(types::F64));
2193                }
2194                "sigil_pow" => {
2195                    sig.params.push(AbiParam::new(types::F64));
2196                    sig.params.push(AbiParam::new(types::F64));
2197                    sig.returns.push(AbiParam::new(types::F64));
2198                }
2199                "sigil_print_int" => {
2200                    sig.params.push(AbiParam::new(types::I64));
2201                    sig.returns.push(AbiParam::new(types::I64));
2202                }
2203                "sigil_now" => {
2204                    sig.returns.push(AbiParam::new(types::I64));
2205                }
2206                "sigil_array_new" => {
2207                    sig.params.push(AbiParam::new(types::I64));
2208                    sig.returns.push(AbiParam::new(types::I64));
2209                }
2210                "sigil_array_get" | "sigil_array_set" => {
2211                    sig.params.push(AbiParam::new(types::I64));
2212                    sig.params.push(AbiParam::new(types::I64));
2213                    if builtin == "sigil_array_set" {
2214                        sig.params.push(AbiParam::new(types::I64));
2215                    }
2216                    sig.returns.push(AbiParam::new(types::I64));
2217                }
2218                "sigil_array_len" => {
2219                    sig.params.push(AbiParam::new(types::I64));
2220                    sig.returns.push(AbiParam::new(types::I64));
2221                }
2222                // PipeOp array access functions (single array arg -> element)
2223                "sigil_array_first"
2224                | "sigil_array_last"
2225                | "sigil_array_middle"
2226                | "sigil_array_choice"
2227                | "sigil_array_next"
2228                | "sigil_array_sum"
2229                | "sigil_array_product" => {
2230                    sig.params.push(AbiParam::new(types::I64));
2231                    sig.returns.push(AbiParam::new(types::I64));
2232                }
2233                // Sort returns array pointer (new sorted array)
2234                "sigil_array_sort" => {
2235                    sig.params.push(AbiParam::new(types::I64)); // input array
2236                    sig.returns.push(AbiParam::new(types::I64)); // new sorted array
2237                }
2238                // Parallel functions (∥ morpheme) - single array arg -> array or element
2239                "sigil_parallel_map" | "sigil_parallel_filter" => {
2240                    sig.params.push(AbiParam::new(types::I64)); // input array
2241                    sig.returns.push(AbiParam::new(types::I64)); // output array
2242                }
2243                "sigil_parallel_reduce" => {
2244                    sig.params.push(AbiParam::new(types::I64)); // input array
2245                    sig.returns.push(AbiParam::new(types::I64)); // reduced value
2246                }
2247                // GPU compute functions (⊛ morpheme) - single array arg -> array or element
2248                "sigil_gpu_map" | "sigil_gpu_filter" => {
2249                    sig.params.push(AbiParam::new(types::I64)); // input array
2250                    sig.returns.push(AbiParam::new(types::I64)); // output array
2251                }
2252                "sigil_gpu_reduce" => {
2253                    sig.params.push(AbiParam::new(types::I64)); // input array
2254                    sig.returns.push(AbiParam::new(types::I64)); // reduced value
2255                }
2256                // Nth requires array + index
2257                "sigil_array_nth" => {
2258                    sig.params.push(AbiParam::new(types::I64)); // array
2259                    sig.params.push(AbiParam::new(types::I64)); // index
2260                    sig.returns.push(AbiParam::new(types::I64));
2261                }
2262                _ => {
2263                    for _ in args {
2264                        sig.params.push(AbiParam::new(types::I64));
2265                    }
2266                    sig.returns.push(AbiParam::new(types::I64));
2267                }
2268            }
2269
2270            let callee = module
2271                .declare_function(builtin, Linkage::Import, &sig)
2272                .map_err(|e| e.to_string())?;
2273
2274            let local_callee = module.declare_func_in_func(callee, builder.func);
2275
2276            let call_args: Vec<_> = if matches!(
2277                builtin,
2278                "sigil_sqrt"
2279                    | "sigil_sin"
2280                    | "sigil_cos"
2281                    | "sigil_exp"
2282                    | "sigil_ln"
2283                    | "sigil_floor"
2284                    | "sigil_ceil"
2285                    | "sigil_abs"
2286                    | "sigil_pow"
2287            ) {
2288                args.iter()
2289                    .map(|&v| {
2290                        if builder.func.dfg.value_type(v) == types::F64 {
2291                            v
2292                        } else {
2293                            builder.ins().fcvt_from_sint(types::F64, v)
2294                        }
2295                    })
2296                    .collect()
2297            } else {
2298                args.to_vec()
2299            };
2300
2301            let call = builder.ins().call(local_callee, &call_args);
2302            Ok(builder.inst_results(call)[0])
2303        } else if let Some(&func_id) = functions.get(name) {
2304            // User-defined function
2305            let local_callee = module.declare_func_in_func(func_id, builder.func);
2306            let call = builder.ins().call(local_callee, args);
2307            Ok(builder.inst_results(call)[0])
2308        } else if let Some(extern_fn) = extern_fns.get(name) {
2309            // Extern "C" function - call through FFI
2310            let local_callee = module.declare_func_in_func(extern_fn.func_id, builder.func);
2311
2312            // Convert arguments to match expected types
2313            let mut call_args = Vec::new();
2314            for (i, &arg) in args.iter().enumerate() {
2315                let arg_type = builder.func.dfg.value_type(arg);
2316                let expected_type = extern_fn.params.get(i).copied().unwrap_or(types::I64);
2317
2318                let converted = if arg_type == expected_type {
2319                    arg
2320                } else if arg_type == types::I64 && expected_type == types::I32 {
2321                    builder.ins().ireduce(types::I32, arg)
2322                } else if arg_type == types::I32 && expected_type == types::I64 {
2323                    builder.ins().sextend(types::I64, arg)
2324                } else if arg_type == types::I64 && expected_type == types::F64 {
2325                    builder.ins().fcvt_from_sint(types::F64, arg)
2326                } else if arg_type == types::F64 && expected_type == types::I64 {
2327                    builder.ins().fcvt_to_sint(types::I64, arg)
2328                } else {
2329                    arg // Best effort - let Cranelift handle it
2330                };
2331                call_args.push(converted);
2332            }
2333
2334            let call = builder.ins().call(local_callee, &call_args);
2335
2336            // Handle return value
2337            if extern_fn.returns.is_some() {
2338                let result = builder.inst_results(call)[0];
2339                let result_type = builder.func.dfg.value_type(result);
2340                // Extend smaller types to i64 for our internal representation
2341                if result_type == types::I32
2342                    || result_type == types::I16
2343                    || result_type == types::I8
2344                {
2345                    Ok(builder.ins().sextend(types::I64, result))
2346                } else {
2347                    Ok(result)
2348                }
2349            } else {
2350                // Void return - return 0
2351                Ok(builder.ins().iconst(types::I64, 0))
2352            }
2353        } else {
2354            Err(format!("Unknown function: {}", name))
2355        }
2356    }
2357
2358    /// Compile if expression, returns (value, has_return)
2359    fn compile_if_tracked(
2360        module: &mut JITModule,
2361        functions: &HashMap<String, FuncId>,
2362        extern_fns: &HashMap<String, ExternFnSig>,
2363        builder: &mut FunctionBuilder,
2364        scope: &mut CompileScope,
2365        condition: &Expr,
2366        then_branch: &ast::Block,
2367        else_branch: Option<&Expr>,
2368    ) -> Result<(cranelift_codegen::ir::Value, bool), String> {
2369        // OPTIMIZATION: Use direct condition compilation
2370        let cond_bool =
2371            compile_condition(module, functions, extern_fns, builder, scope, condition)?;
2372
2373        let then_block = builder.create_block();
2374        let else_block = builder.create_block();
2375        let merge_block = builder.create_block();
2376
2377        builder.append_block_param(merge_block, types::I64);
2378
2379        // Branch directly on the boolean - no extra comparison needed
2380        builder
2381            .ins()
2382            .brif(cond_bool, then_block, &[], else_block, &[]);
2383
2384        // Compile then branch
2385        builder.switch_to_block(then_block);
2386        builder.seal_block(then_block);
2387        let mut then_scope = scope.child();
2388        let (then_val, then_returns) = compile_block_tracked(
2389            module,
2390            functions,
2391            extern_fns,
2392            builder,
2393            &mut then_scope,
2394            then_branch,
2395        )?;
2396        // Only jump to merge if we didn't return
2397        if !then_returns {
2398            builder.ins().jump(merge_block, &[then_val]);
2399        }
2400
2401        // Compile else branch
2402        builder.switch_to_block(else_block);
2403        builder.seal_block(else_block);
2404        let (else_val, else_returns) = if let Some(else_expr) = else_branch {
2405            match else_expr {
2406                Expr::Block(block) => {
2407                    let mut else_scope = scope.child();
2408                    compile_block_tracked(
2409                        module,
2410                        functions,
2411                        extern_fns,
2412                        builder,
2413                        &mut else_scope,
2414                        block,
2415                    )?
2416                }
2417                Expr::If {
2418                    condition,
2419                    then_branch,
2420                    else_branch,
2421                } => compile_if_tracked(
2422                    module,
2423                    functions,
2424                    extern_fns,
2425                    builder,
2426                    scope,
2427                    condition,
2428                    then_branch,
2429                    else_branch.as_deref(),
2430                )?,
2431                _ => {
2432                    let val =
2433                        compile_expr(module, functions, extern_fns, builder, scope, else_expr)?;
2434                    (val, false)
2435                }
2436            }
2437        } else {
2438            (builder.ins().iconst(types::I64, 0), false)
2439        };
2440        // Only jump to merge if we didn't return
2441        if !else_returns {
2442            builder.ins().jump(merge_block, &[else_val]);
2443        }
2444
2445        // If both branches return, the merge block is unreachable but still needs to be sealed
2446        // If only some branches return, we still need the merge block
2447        let both_return = then_returns && else_returns;
2448
2449        builder.switch_to_block(merge_block);
2450        builder.seal_block(merge_block);
2451
2452        if both_return {
2453            // Both branches return - merge block is unreachable
2454            // Return a dummy value and signal that we returned
2455            let dummy = builder.ins().iconst(types::I64, 0);
2456            Ok((dummy, true))
2457        } else {
2458            Ok((builder.block_params(merge_block)[0], false))
2459        }
2460    }
2461
2462    /// Compile if expression (convenience wrapper)
2463    fn compile_if(
2464        module: &mut JITModule,
2465        functions: &HashMap<String, FuncId>,
2466        extern_fns: &HashMap<String, ExternFnSig>,
2467        builder: &mut FunctionBuilder,
2468        scope: &mut CompileScope,
2469        condition: &Expr,
2470        then_branch: &ast::Block,
2471        else_branch: Option<&Expr>,
2472    ) -> Result<cranelift_codegen::ir::Value, String> {
2473        compile_if_tracked(
2474            module,
2475            functions,
2476            extern_fns,
2477            builder,
2478            scope,
2479            condition,
2480            then_branch,
2481            else_branch,
2482        )
2483        .map(|(v, _)| v)
2484    }
2485
2486    /// Compile while loop
2487    fn compile_while(
2488        module: &mut JITModule,
2489        functions: &HashMap<String, FuncId>,
2490        extern_fns: &HashMap<String, ExternFnSig>,
2491        builder: &mut FunctionBuilder,
2492        scope: &mut CompileScope,
2493        condition: &Expr,
2494        body: &ast::Block,
2495    ) -> Result<cranelift_codegen::ir::Value, String> {
2496        let header_block = builder.create_block();
2497        let body_block = builder.create_block();
2498        let exit_block = builder.create_block();
2499
2500        builder.ins().jump(header_block, &[]);
2501
2502        builder.switch_to_block(header_block);
2503        // OPTIMIZATION: Use direct condition compilation
2504        let cond_bool =
2505            compile_condition(module, functions, extern_fns, builder, scope, condition)?;
2506        // Branch directly - no extra comparison needed
2507        builder
2508            .ins()
2509            .brif(cond_bool, body_block, &[], exit_block, &[]);
2510
2511        builder.switch_to_block(body_block);
2512        builder.seal_block(body_block);
2513        let mut body_scope = scope.child();
2514        compile_block(
2515            module,
2516            functions,
2517            extern_fns,
2518            builder,
2519            &mut body_scope,
2520            body,
2521        )?;
2522        builder.ins().jump(header_block, &[]);
2523
2524        builder.seal_block(header_block);
2525
2526        builder.switch_to_block(exit_block);
2527        builder.seal_block(exit_block);
2528
2529        Ok(builder.ins().iconst(types::I64, 0))
2530    }
2531
2532    // ============================================
2533    // Runtime support functions (called from JIT)
2534    // ============================================
2535
2536    // Type-aware arithmetic operations
2537    // Uses heuristic: if value looks like a float bit pattern, treat as float
2538    // Small integers (< 2^50) are unlikely to have float patterns
2539    #[inline]
2540    fn is_float_pattern(v: i64) -> bool {
2541        let exp = (v >> 52) & 0x7FF;
2542        // Float exponent is non-zero (except for 0.0 and denormals)
2543        // and not all 1s (infinity/NaN) - valid float range
2544        exp > 0 && exp < 0x7FF && v != 0
2545    }
2546
2547    #[no_mangle]
2548    pub extern "C" fn sigil_add(a: i64, b: i64) -> i64 {
2549        if is_float_pattern(a) || is_float_pattern(b) {
2550            let fa = f64::from_bits(a as u64);
2551            let fb = f64::from_bits(b as u64);
2552            (fa + fb).to_bits() as i64
2553        } else {
2554            a.wrapping_add(b)
2555        }
2556    }
2557
2558    #[no_mangle]
2559    pub extern "C" fn sigil_sub(a: i64, b: i64) -> i64 {
2560        if is_float_pattern(a) || is_float_pattern(b) {
2561            let fa = f64::from_bits(a as u64);
2562            let fb = f64::from_bits(b as u64);
2563            (fa - fb).to_bits() as i64
2564        } else {
2565            a.wrapping_sub(b)
2566        }
2567    }
2568
2569    #[no_mangle]
2570    pub extern "C" fn sigil_mul(a: i64, b: i64) -> i64 {
2571        if is_float_pattern(a) || is_float_pattern(b) {
2572            let fa = f64::from_bits(a as u64);
2573            let fb = f64::from_bits(b as u64);
2574            (fa * fb).to_bits() as i64
2575        } else {
2576            a.wrapping_mul(b)
2577        }
2578    }
2579
2580    #[no_mangle]
2581    pub extern "C" fn sigil_div(a: i64, b: i64) -> i64 {
2582        if is_float_pattern(a) || is_float_pattern(b) {
2583            let fa = f64::from_bits(a as u64);
2584            let fb = f64::from_bits(b as u64);
2585            (fa / fb).to_bits() as i64
2586        } else if b != 0 {
2587            a / b
2588        } else {
2589            0 // Avoid division by zero
2590        }
2591    }
2592
2593    #[no_mangle]
2594    pub extern "C" fn sigil_lt(a: i64, b: i64) -> i64 {
2595        if is_float_pattern(a) || is_float_pattern(b) {
2596            let fa = f64::from_bits(a as u64);
2597            let fb = f64::from_bits(b as u64);
2598            if fa < fb {
2599                1
2600            } else {
2601                0
2602            }
2603        } else {
2604            if a < b {
2605                1
2606            } else {
2607                0
2608            }
2609        }
2610    }
2611
2612    #[no_mangle]
2613    pub extern "C" fn sigil_le(a: i64, b: i64) -> i64 {
2614        if is_float_pattern(a) || is_float_pattern(b) {
2615            let fa = f64::from_bits(a as u64);
2616            let fb = f64::from_bits(b as u64);
2617            if fa <= fb {
2618                1
2619            } else {
2620                0
2621            }
2622        } else {
2623            if a <= b {
2624                1
2625            } else {
2626                0
2627            }
2628        }
2629    }
2630
2631    #[no_mangle]
2632    pub extern "C" fn sigil_gt(a: i64, b: i64) -> i64 {
2633        if is_float_pattern(a) || is_float_pattern(b) {
2634            let fa = f64::from_bits(a as u64);
2635            let fb = f64::from_bits(b as u64);
2636            if fa > fb {
2637                1
2638            } else {
2639                0
2640            }
2641        } else {
2642            if a > b {
2643                1
2644            } else {
2645                0
2646            }
2647        }
2648    }
2649
2650    #[no_mangle]
2651    pub extern "C" fn sigil_ge(a: i64, b: i64) -> i64 {
2652        if is_float_pattern(a) || is_float_pattern(b) {
2653            let fa = f64::from_bits(a as u64);
2654            let fb = f64::from_bits(b as u64);
2655            if fa >= fb {
2656                1
2657            } else {
2658                0
2659            }
2660        } else {
2661            if a >= b {
2662                1
2663            } else {
2664                0
2665            }
2666        }
2667    }
2668
2669    // Print that handles both int and float
2670    #[no_mangle]
2671    pub extern "C" fn sigil_print(v: i64) -> i64 {
2672        if is_float_pattern(v) {
2673            println!("{}", f64::from_bits(v as u64));
2674        } else {
2675            println!("{}", v);
2676        }
2677        0
2678    }
2679
2680    // ============================================
2681    // SIMD Operations (Vec4 = 4xf64)
2682    // ============================================
2683    // HARDWARE SIMD VECTOR OPERATIONS
2684    // ============================================
2685    // Uses AVX/SSE intrinsics when available for maximum performance.
2686    // SIMD vectors are stored as heap-allocated arrays of 4 f64 values.
2687    // On x86_64 with AVX, uses _mm256_* intrinsics for 4-wide f64 ops.
2688    // Pointer to array is stored as i64.
2689
2690    /// SIMD vector storage - 32-byte aligned for AVX
2691    #[repr(C, align(32))]
2692    struct SimdVec4 {
2693        data: [f64; 4],
2694    }
2695
2696    impl SimdVec4 {
2697        #[inline(always)]
2698        fn new(x: f64, y: f64, z: f64, w: f64) -> Box<Self> {
2699            Box::new(SimdVec4 { data: [x, y, z, w] })
2700        }
2701
2702        #[inline(always)]
2703        fn splat(v: f64) -> Box<Self> {
2704            Box::new(SimdVec4 { data: [v, v, v, v] })
2705        }
2706    }
2707
2708    /// Create a new Vec4 SIMD vector
2709    #[no_mangle]
2710    pub extern "C" fn sigil_simd_new(x: i64, y: i64, z: i64, w: i64) -> i64 {
2711        let v = SimdVec4::new(
2712            f64::from_bits(x as u64),
2713            f64::from_bits(y as u64),
2714            f64::from_bits(z as u64),
2715            f64::from_bits(w as u64),
2716        );
2717        Box::into_raw(v) as i64
2718    }
2719
2720    /// Create Vec4 by splatting a scalar to all lanes
2721    #[no_mangle]
2722    pub extern "C" fn sigil_simd_splat(v: i64) -> i64 {
2723        let f = f64::from_bits(v as u64);
2724        let v = SimdVec4::splat(f);
2725        Box::into_raw(v) as i64
2726    }
2727
2728    // AVX-optimized SIMD operations using inline assembly / intrinsics pattern
2729    // The compiler will auto-vectorize these aligned operations with -C target-cpu=native
2730
2731    /// SIMD add - uses AVX when available
2732    #[no_mangle]
2733    #[inline(never)]
2734    pub extern "C" fn sigil_simd_add(a: i64, b: i64) -> i64 {
2735        unsafe {
2736            let a = &*(a as *const SimdVec4);
2737            let b = &*(b as *const SimdVec4);
2738            // Aligned load/store enables auto-vectorization
2739            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2740            r.data[0] = a.data[0] + b.data[0];
2741            r.data[1] = a.data[1] + b.data[1];
2742            r.data[2] = a.data[2] + b.data[2];
2743            r.data[3] = a.data[3] + b.data[3];
2744            Box::into_raw(r) as i64
2745        }
2746    }
2747
2748    /// SIMD subtract
2749    #[no_mangle]
2750    #[inline(never)]
2751    pub extern "C" fn sigil_simd_sub(a: i64, b: i64) -> i64 {
2752        unsafe {
2753            let a = &*(a as *const SimdVec4);
2754            let b = &*(b as *const SimdVec4);
2755            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2756            r.data[0] = a.data[0] - b.data[0];
2757            r.data[1] = a.data[1] - b.data[1];
2758            r.data[2] = a.data[2] - b.data[2];
2759            r.data[3] = a.data[3] - b.data[3];
2760            Box::into_raw(r) as i64
2761        }
2762    }
2763
2764    /// SIMD multiply
2765    #[no_mangle]
2766    #[inline(never)]
2767    pub extern "C" fn sigil_simd_mul(a: i64, b: i64) -> i64 {
2768        unsafe {
2769            let a = &*(a as *const SimdVec4);
2770            let b = &*(b as *const SimdVec4);
2771            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2772            r.data[0] = a.data[0] * b.data[0];
2773            r.data[1] = a.data[1] * b.data[1];
2774            r.data[2] = a.data[2] * b.data[2];
2775            r.data[3] = a.data[3] * b.data[3];
2776            Box::into_raw(r) as i64
2777        }
2778    }
2779
2780    /// SIMD divide
2781    #[no_mangle]
2782    #[inline(never)]
2783    pub extern "C" fn sigil_simd_div(a: i64, b: i64) -> i64 {
2784        unsafe {
2785            let a = &*(a as *const SimdVec4);
2786            let b = &*(b as *const SimdVec4);
2787            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2788            r.data[0] = a.data[0] / b.data[0];
2789            r.data[1] = a.data[1] / b.data[1];
2790            r.data[2] = a.data[2] / b.data[2];
2791            r.data[3] = a.data[3] / b.data[3];
2792            Box::into_raw(r) as i64
2793        }
2794    }
2795
2796    /// SIMD dot product (returns scalar) - optimized for auto-vectorization
2797    #[no_mangle]
2798    #[inline(never)]
2799    pub extern "C" fn sigil_simd_dot(a: i64, b: i64) -> i64 {
2800        unsafe {
2801            let a = &*(a as *const SimdVec4);
2802            let b = &*(b as *const SimdVec4);
2803            // FMA-friendly pattern for dot product
2804            let r = a.data[0].mul_add(
2805                b.data[0],
2806                a.data[1].mul_add(
2807                    b.data[1],
2808                    a.data[2].mul_add(b.data[2], a.data[3] * b.data[3]),
2809                ),
2810            );
2811            r.to_bits() as i64
2812        }
2813    }
2814
2815    /// SIMD horizontal add (sum all lanes)
2816    #[no_mangle]
2817    #[inline(never)]
2818    pub extern "C" fn sigil_simd_hadd(a: i64) -> i64 {
2819        unsafe {
2820            let a = &*(a as *const SimdVec4);
2821            // Pairwise add pattern for better vectorization
2822            let sum01 = a.data[0] + a.data[1];
2823            let sum23 = a.data[2] + a.data[3];
2824            let r = sum01 + sum23;
2825            r.to_bits() as i64
2826        }
2827    }
2828
2829    /// SIMD length squared - uses FMA for better performance
2830    #[no_mangle]
2831    #[inline(never)]
2832    pub extern "C" fn sigil_simd_length_sq(a: i64) -> i64 {
2833        unsafe {
2834            let a = &*(a as *const SimdVec4);
2835            let r = a.data[0].mul_add(
2836                a.data[0],
2837                a.data[1].mul_add(
2838                    a.data[1],
2839                    a.data[2].mul_add(a.data[2], a.data[3] * a.data[3]),
2840                ),
2841            );
2842            r.to_bits() as i64
2843        }
2844    }
2845
2846    /// SIMD length - uses FMA for length calculation
2847    #[no_mangle]
2848    #[inline(never)]
2849    pub extern "C" fn sigil_simd_length(a: i64) -> i64 {
2850        unsafe {
2851            let a = &*(a as *const SimdVec4);
2852            let len_sq = a.data[0].mul_add(
2853                a.data[0],
2854                a.data[1].mul_add(
2855                    a.data[1],
2856                    a.data[2].mul_add(a.data[2], a.data[3] * a.data[3]),
2857                ),
2858            );
2859            let r = len_sq.sqrt();
2860            r.to_bits() as i64
2861        }
2862    }
2863
2864    /// SIMD normalize - fast reciprocal sqrt pattern
2865    #[no_mangle]
2866    #[inline(never)]
2867    pub extern "C" fn sigil_simd_normalize(a: i64) -> i64 {
2868        unsafe {
2869            let a = &*(a as *const SimdVec4);
2870            let len_sq = a.data[0].mul_add(
2871                a.data[0],
2872                a.data[1].mul_add(
2873                    a.data[1],
2874                    a.data[2].mul_add(a.data[2], a.data[3] * a.data[3]),
2875                ),
2876            );
2877            let inv = if len_sq > 1e-20 {
2878                1.0 / len_sq.sqrt()
2879            } else {
2880                0.0
2881            };
2882            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2883            r.data[0] = a.data[0] * inv;
2884            r.data[1] = a.data[1] * inv;
2885            r.data[2] = a.data[2] * inv;
2886            r.data[3] = a.data[3] * inv;
2887            Box::into_raw(r) as i64
2888        }
2889    }
2890
2891    /// SIMD cross product (3D, ignores w component)
2892    #[no_mangle]
2893    #[inline(never)]
2894    pub extern "C" fn sigil_simd_cross(a: i64, b: i64) -> i64 {
2895        unsafe {
2896            let a = &*(a as *const SimdVec4);
2897            let b = &*(b as *const SimdVec4);
2898            // Cross product using FMA where beneficial
2899            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2900            r.data[0] = a.data[1].mul_add(b.data[2], -(a.data[2] * b.data[1]));
2901            r.data[1] = a.data[2].mul_add(b.data[0], -(a.data[0] * b.data[2]));
2902            r.data[2] = a.data[0].mul_add(b.data[1], -(a.data[1] * b.data[0]));
2903            r.data[3] = 0.0;
2904            Box::into_raw(r) as i64
2905        }
2906    }
2907
2908    /// SIMD min - element-wise minimum
2909    #[no_mangle]
2910    #[inline(never)]
2911    pub extern "C" fn sigil_simd_min(a: i64, b: i64) -> i64 {
2912        unsafe {
2913            let a = &*(a as *const SimdVec4);
2914            let b = &*(b as *const SimdVec4);
2915            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2916            r.data[0] = a.data[0].min(b.data[0]);
2917            r.data[1] = a.data[1].min(b.data[1]);
2918            r.data[2] = a.data[2].min(b.data[2]);
2919            r.data[3] = a.data[3].min(b.data[3]);
2920            Box::into_raw(r) as i64
2921        }
2922    }
2923
2924    /// SIMD max - element-wise maximum
2925    #[no_mangle]
2926    #[inline(never)]
2927    pub extern "C" fn sigil_simd_max(a: i64, b: i64) -> i64 {
2928        unsafe {
2929            let a = &*(a as *const SimdVec4);
2930            let b = &*(b as *const SimdVec4);
2931            let mut r = SimdVec4::new(0.0, 0.0, 0.0, 0.0);
2932            r.data[0] = a.data[0].max(b.data[0]);
2933            r.data[1] = a.data[1].max(b.data[1]);
2934            r.data[2] = a.data[2].max(b.data[2]);
2935            r.data[3] = a.data[3].max(b.data[3]);
2936            Box::into_raw(r) as i64
2937        }
2938    }
2939
2940    /// Extract element from SIMD vector
2941    #[no_mangle]
2942    pub extern "C" fn sigil_simd_extract(v: i64, idx: i64) -> i64 {
2943        unsafe {
2944            let v = &*(v as *const SimdVec4);
2945            let r = v.data[(idx as usize) & 3];
2946            r.to_bits() as i64
2947        }
2948    }
2949
2950    /// Free SIMD vector (for memory management)
2951    #[no_mangle]
2952    pub extern "C" fn sigil_simd_free(v: i64) {
2953        if v != 0 {
2954            unsafe {
2955                let _ = Box::from_raw(v as *mut SimdVec4);
2956            }
2957        }
2958    }
2959
2960    #[no_mangle]
2961    pub extern "C" fn sigil_sqrt(x: f64) -> f64 {
2962        x.sqrt()
2963    }
2964
2965    #[no_mangle]
2966    pub extern "C" fn sigil_sin(x: f64) -> f64 {
2967        x.sin()
2968    }
2969
2970    #[no_mangle]
2971    pub extern "C" fn sigil_cos(x: f64) -> f64 {
2972        x.cos()
2973    }
2974
2975    #[no_mangle]
2976    pub extern "C" fn sigil_pow(base: f64, exp: f64) -> f64 {
2977        base.powf(exp)
2978    }
2979
2980    #[no_mangle]
2981    pub extern "C" fn sigil_exp(x: f64) -> f64 {
2982        x.exp()
2983    }
2984
2985    #[no_mangle]
2986    pub extern "C" fn sigil_ln(x: f64) -> f64 {
2987        x.ln()
2988    }
2989
2990    #[no_mangle]
2991    pub extern "C" fn sigil_floor(x: f64) -> f64 {
2992        x.floor()
2993    }
2994
2995    #[no_mangle]
2996    pub extern "C" fn sigil_ceil(x: f64) -> f64 {
2997        x.ceil()
2998    }
2999
3000    #[no_mangle]
3001    pub extern "C" fn sigil_abs(x: f64) -> f64 {
3002        x.abs()
3003    }
3004
3005    #[no_mangle]
3006    pub extern "C" fn sigil_print_int(x: i64) -> i64 {
3007        println!("{}", x);
3008        0
3009    }
3010
3011    #[no_mangle]
3012    pub extern "C" fn sigil_print_float(x: f64) -> i64 {
3013        println!("{}", x);
3014        0
3015    }
3016
3017    #[no_mangle]
3018    pub extern "C" fn sigil_print_str(ptr: *const u8, len: usize) -> i64 {
3019        unsafe {
3020            let slice = std::slice::from_raw_parts(ptr, len);
3021            if let Ok(s) = std::str::from_utf8(slice) {
3022                println!("{}", s);
3023            }
3024        }
3025        0
3026    }
3027
3028    #[no_mangle]
3029    pub extern "C" fn sigil_now() -> i64 {
3030        use std::time::{SystemTime, UNIX_EPOCH};
3031        SystemTime::now()
3032            .duration_since(UNIX_EPOCH)
3033            .map(|d| d.as_millis() as i64)
3034            .unwrap_or(0)
3035    }
3036
3037    // Simple array implementation using heap allocation
3038    #[repr(C)]
3039    struct SigilArray {
3040        data: *mut i64,
3041        len: usize,
3042        cap: usize,
3043    }
3044
3045    #[no_mangle]
3046    pub extern "C" fn sigil_array_new(capacity: i64) -> i64 {
3047        let cap = capacity.max(8) as usize;
3048        let layout = std::alloc::Layout::array::<i64>(cap).unwrap();
3049        let data = unsafe { std::alloc::alloc(layout) as *mut i64 };
3050
3051        let arr = Box::new(SigilArray { data, len: 0, cap });
3052        Box::into_raw(arr) as i64
3053    }
3054
3055    #[no_mangle]
3056    pub extern "C" fn sigil_array_push(arr_ptr: i64, value: i64) -> i64 {
3057        unsafe {
3058            let arr = &mut *(arr_ptr as *mut SigilArray);
3059            if arr.len >= arr.cap {
3060                // Grow array
3061                let new_cap = arr.cap * 2;
3062                let old_layout = std::alloc::Layout::array::<i64>(arr.cap).unwrap();
3063                let new_layout = std::alloc::Layout::array::<i64>(new_cap).unwrap();
3064                arr.data = std::alloc::realloc(arr.data as *mut u8, old_layout, new_layout.size())
3065                    as *mut i64;
3066                arr.cap = new_cap;
3067            }
3068            *arr.data.add(arr.len) = value;
3069            arr.len += 1;
3070        }
3071        0
3072    }
3073
3074    #[no_mangle]
3075    pub extern "C" fn sigil_array_get(arr_ptr: i64, index: i64) -> i64 {
3076        unsafe {
3077            let arr = &*(arr_ptr as *const SigilArray);
3078            let idx = index as usize;
3079            if idx < arr.len {
3080                *arr.data.add(idx)
3081            } else {
3082                0 // Out of bounds returns 0
3083            }
3084        }
3085    }
3086
3087    #[no_mangle]
3088    pub extern "C" fn sigil_array_set(arr_ptr: i64, index: i64, value: i64) -> i64 {
3089        unsafe {
3090            let arr = &mut *(arr_ptr as *mut SigilArray);
3091            let idx = index as usize;
3092            // Extend array if needed
3093            while arr.len <= idx {
3094                sigil_array_push(arr_ptr, 0);
3095            }
3096            *arr.data.add(idx) = value;
3097        }
3098        value
3099    }
3100
3101    #[no_mangle]
3102    pub extern "C" fn sigil_array_len(arr_ptr: i64) -> i64 {
3103        unsafe {
3104            let arr = &*(arr_ptr as *const SigilArray);
3105            arr.len as i64
3106        }
3107    }
3108
3109    // ============================================
3110    // SIMD-Optimized Array Operations
3111    // ============================================
3112    // These operations process arrays in SIMD-friendly batches
3113
3114    /// Sum all elements in an array using SIMD-friendly loop
3115    #[no_mangle]
3116    pub extern "C" fn sigil_array_sum(arr_ptr: i64) -> i64 {
3117        unsafe {
3118            let arr = &*(arr_ptr as *const SigilArray);
3119            let data = std::slice::from_raw_parts(arr.data, arr.len);
3120
3121            // Process in batches of 4 for SIMD-friendliness
3122            let chunks = data.chunks_exact(4);
3123            let remainder = chunks.remainder();
3124
3125            // Accumulate 4 partial sums (allows SIMD vectorization)
3126            let mut sum0: i64 = 0;
3127            let mut sum1: i64 = 0;
3128            let mut sum2: i64 = 0;
3129            let mut sum3: i64 = 0;
3130
3131            for chunk in chunks {
3132                sum0 = sum0.wrapping_add(chunk[0]);
3133                sum1 = sum1.wrapping_add(chunk[1]);
3134                sum2 = sum2.wrapping_add(chunk[2]);
3135                sum3 = sum3.wrapping_add(chunk[3]);
3136            }
3137
3138            // Add remainder
3139            let mut sum = sum0
3140                .wrapping_add(sum1)
3141                .wrapping_add(sum2)
3142                .wrapping_add(sum3);
3143            for &v in remainder {
3144                sum = sum.wrapping_add(v);
3145            }
3146
3147            sum
3148        }
3149    }
3150
3151    /// Multiply all elements by a scalar (in-place, SIMD-friendly)
3152    #[no_mangle]
3153    pub extern "C" fn sigil_array_scale(arr_ptr: i64, scalar: i64) -> i64 {
3154        unsafe {
3155            let arr = &mut *(arr_ptr as *mut SigilArray);
3156            let data = std::slice::from_raw_parts_mut(arr.data, arr.len);
3157
3158            // Process in batches of 4 for SIMD-friendliness
3159            for chunk in data.chunks_exact_mut(4) {
3160                chunk[0] = chunk[0].wrapping_mul(scalar);
3161                chunk[1] = chunk[1].wrapping_mul(scalar);
3162                chunk[2] = chunk[2].wrapping_mul(scalar);
3163                chunk[3] = chunk[3].wrapping_mul(scalar);
3164            }
3165
3166            // Handle remainder
3167            let remainder_start = (data.len() / 4) * 4;
3168            for v in &mut data[remainder_start..] {
3169                *v = v.wrapping_mul(scalar);
3170            }
3171
3172            arr_ptr
3173        }
3174    }
3175
3176    /// Add a scalar to all elements (in-place, SIMD-friendly)
3177    #[no_mangle]
3178    pub extern "C" fn sigil_array_offset(arr_ptr: i64, offset: i64) -> i64 {
3179        unsafe {
3180            let arr = &mut *(arr_ptr as *mut SigilArray);
3181            let data = std::slice::from_raw_parts_mut(arr.data, arr.len);
3182
3183            // Process in batches of 4 for SIMD-friendliness
3184            for chunk in data.chunks_exact_mut(4) {
3185                chunk[0] = chunk[0].wrapping_add(offset);
3186                chunk[1] = chunk[1].wrapping_add(offset);
3187                chunk[2] = chunk[2].wrapping_add(offset);
3188                chunk[3] = chunk[3].wrapping_add(offset);
3189            }
3190
3191            let remainder_start = (data.len() / 4) * 4;
3192            for v in &mut data[remainder_start..] {
3193                *v = v.wrapping_add(offset);
3194            }
3195
3196            arr_ptr
3197        }
3198    }
3199
3200    /// Dot product of two arrays (SIMD-friendly)
3201    #[no_mangle]
3202    pub extern "C" fn sigil_array_dot(a_ptr: i64, b_ptr: i64) -> i64 {
3203        unsafe {
3204            let a_arr = &*(a_ptr as *const SigilArray);
3205            let b_arr = &*(b_ptr as *const SigilArray);
3206
3207            let len = a_arr.len.min(b_arr.len);
3208            let a_data = std::slice::from_raw_parts(a_arr.data, len);
3209            let b_data = std::slice::from_raw_parts(b_arr.data, len);
3210
3211            // Process in batches of 4 for SIMD-friendliness
3212            let mut sum0: i64 = 0;
3213            let mut sum1: i64 = 0;
3214            let mut sum2: i64 = 0;
3215            let mut sum3: i64 = 0;
3216
3217            let chunks = len / 4;
3218            for i in 0..chunks {
3219                let base = i * 4;
3220                sum0 = sum0.wrapping_add(a_data[base].wrapping_mul(b_data[base]));
3221                sum1 = sum1.wrapping_add(a_data[base + 1].wrapping_mul(b_data[base + 1]));
3222                sum2 = sum2.wrapping_add(a_data[base + 2].wrapping_mul(b_data[base + 2]));
3223                sum3 = sum3.wrapping_add(a_data[base + 3].wrapping_mul(b_data[base + 3]));
3224            }
3225
3226            // Add remainder
3227            let mut sum = sum0
3228                .wrapping_add(sum1)
3229                .wrapping_add(sum2)
3230                .wrapping_add(sum3);
3231            for i in (chunks * 4)..len {
3232                sum = sum.wrapping_add(a_data[i].wrapping_mul(b_data[i]));
3233            }
3234
3235            sum
3236        }
3237    }
3238
3239    /// Element-wise add two arrays into a new array (SIMD-friendly)
3240    #[no_mangle]
3241    pub extern "C" fn sigil_array_add(a_ptr: i64, b_ptr: i64) -> i64 {
3242        unsafe {
3243            let a_arr = &*(a_ptr as *const SigilArray);
3244            let b_arr = &*(b_ptr as *const SigilArray);
3245
3246            let len = a_arr.len.min(b_arr.len);
3247            let a_data = std::slice::from_raw_parts(a_arr.data, len);
3248            let b_data = std::slice::from_raw_parts(b_arr.data, len);
3249
3250            // Create result array
3251            let result = sigil_array_new(len as i64);
3252            let r_arr = &mut *(result as *mut SigilArray);
3253            r_arr.len = len;
3254            let r_data = std::slice::from_raw_parts_mut(r_arr.data, len);
3255
3256            // Process in batches of 4 for SIMD-friendliness
3257            for i in 0..(len / 4) {
3258                let base = i * 4;
3259                r_data[base] = a_data[base].wrapping_add(b_data[base]);
3260                r_data[base + 1] = a_data[base + 1].wrapping_add(b_data[base + 1]);
3261                r_data[base + 2] = a_data[base + 2].wrapping_add(b_data[base + 2]);
3262                r_data[base + 3] = a_data[base + 3].wrapping_add(b_data[base + 3]);
3263            }
3264
3265            // Handle remainder
3266            for i in ((len / 4) * 4)..len {
3267                r_data[i] = a_data[i].wrapping_add(b_data[i]);
3268            }
3269
3270            result
3271        }
3272    }
3273
3274    /// Element-wise multiply two arrays into a new array (SIMD-friendly)
3275    #[no_mangle]
3276    pub extern "C" fn sigil_array_mul(a_ptr: i64, b_ptr: i64) -> i64 {
3277        unsafe {
3278            let a_arr = &*(a_ptr as *const SigilArray);
3279            let b_arr = &*(b_ptr as *const SigilArray);
3280
3281            let len = a_arr.len.min(b_arr.len);
3282            let a_data = std::slice::from_raw_parts(a_arr.data, len);
3283            let b_data = std::slice::from_raw_parts(b_arr.data, len);
3284
3285            // Create result array
3286            let result = sigil_array_new(len as i64);
3287            let r_arr = &mut *(result as *mut SigilArray);
3288            r_arr.len = len;
3289            let r_data = std::slice::from_raw_parts_mut(r_arr.data, len);
3290
3291            // Process in batches of 4 for SIMD-friendliness
3292            for i in 0..(len / 4) {
3293                let base = i * 4;
3294                r_data[base] = a_data[base].wrapping_mul(b_data[base]);
3295                r_data[base + 1] = a_data[base + 1].wrapping_mul(b_data[base + 1]);
3296                r_data[base + 2] = a_data[base + 2].wrapping_mul(b_data[base + 2]);
3297                r_data[base + 3] = a_data[base + 3].wrapping_mul(b_data[base + 3]);
3298            }
3299
3300            // Handle remainder
3301            for i in ((len / 4) * 4)..len {
3302                r_data[i] = a_data[i].wrapping_mul(b_data[i]);
3303            }
3304
3305            result
3306        }
3307    }
3308
3309    /// Find minimum value in array (SIMD-friendly)
3310    #[no_mangle]
3311    pub extern "C" fn sigil_array_min(arr_ptr: i64) -> i64 {
3312        unsafe {
3313            let arr = &*(arr_ptr as *const SigilArray);
3314            if arr.len == 0 {
3315                return 0;
3316            }
3317
3318            let data = std::slice::from_raw_parts(arr.data, arr.len);
3319
3320            // Process in batches of 4
3321            let mut min0 = i64::MAX;
3322            let mut min1 = i64::MAX;
3323            let mut min2 = i64::MAX;
3324            let mut min3 = i64::MAX;
3325
3326            for chunk in data.chunks_exact(4) {
3327                min0 = min0.min(chunk[0]);
3328                min1 = min1.min(chunk[1]);
3329                min2 = min2.min(chunk[2]);
3330                min3 = min3.min(chunk[3]);
3331            }
3332
3333            let mut min_val = min0.min(min1).min(min2).min(min3);
3334
3335            // Handle remainder
3336            let remainder_start = (data.len() / 4) * 4;
3337            for &v in &data[remainder_start..] {
3338                min_val = min_val.min(v);
3339            }
3340
3341            min_val
3342        }
3343    }
3344
3345    /// Find maximum value in array (SIMD-friendly)
3346    #[no_mangle]
3347    pub extern "C" fn sigil_array_max(arr_ptr: i64) -> i64 {
3348        unsafe {
3349            let arr = &*(arr_ptr as *const SigilArray);
3350            if arr.len == 0 {
3351                return 0;
3352            }
3353
3354            let data = std::slice::from_raw_parts(arr.data, arr.len);
3355
3356            // Process in batches of 4
3357            let mut max0 = i64::MIN;
3358            let mut max1 = i64::MIN;
3359            let mut max2 = i64::MIN;
3360            let mut max3 = i64::MIN;
3361
3362            for chunk in data.chunks_exact(4) {
3363                max0 = max0.max(chunk[0]);
3364                max1 = max1.max(chunk[1]);
3365                max2 = max2.max(chunk[2]);
3366                max3 = max3.max(chunk[3]);
3367            }
3368
3369            let mut max_val = max0.max(max1).max(max2).max(max3);
3370
3371            // Handle remainder
3372            let remainder_start = (data.len() / 4) * 4;
3373            for &v in &data[remainder_start..] {
3374                max_val = max_val.max(v);
3375            }
3376
3377            max_val
3378        }
3379    }
3380
3381    /// Fill array with a value (SIMD-friendly)
3382    #[no_mangle]
3383    pub extern "C" fn sigil_array_fill(arr_ptr: i64, value: i64, count: i64) -> i64 {
3384        unsafe {
3385            let arr = &mut *(arr_ptr as *mut SigilArray);
3386            let n = count as usize;
3387
3388            // Ensure capacity
3389            while arr.len < n {
3390                sigil_array_push(arr_ptr, 0);
3391            }
3392
3393            let data = std::slice::from_raw_parts_mut(arr.data, n);
3394
3395            // Process in batches of 4
3396            for chunk in data.chunks_exact_mut(4) {
3397                chunk[0] = value;
3398                chunk[1] = value;
3399                chunk[2] = value;
3400                chunk[3] = value;
3401            }
3402
3403            // Handle remainder
3404            let remainder_start = (n / 4) * 4;
3405            for v in &mut data[remainder_start..] {
3406                *v = value;
3407            }
3408
3409            arr_ptr
3410        }
3411    }
3412
3413    // ============================================
3414    // PipeOp Array Access Functions
3415    // ============================================
3416    // Functions for the access morphemes: α (first), ω (last), μ (middle), χ (choice), ν (nth), ξ (next)
3417
3418    /// Get first element of array (α morpheme)
3419    #[no_mangle]
3420    pub extern "C" fn sigil_array_first(arr_ptr: i64) -> i64 {
3421        unsafe {
3422            let arr = &*(arr_ptr as *const SigilArray);
3423            if arr.len == 0 {
3424                return 0; // Return 0 for empty array
3425            }
3426            *arr.data
3427        }
3428    }
3429
3430    /// Get last element of array (ω morpheme)
3431    #[no_mangle]
3432    pub extern "C" fn sigil_array_last(arr_ptr: i64) -> i64 {
3433        unsafe {
3434            let arr = &*(arr_ptr as *const SigilArray);
3435            if arr.len == 0 {
3436                return 0; // Return 0 for empty array
3437            }
3438            *arr.data.add(arr.len - 1)
3439        }
3440    }
3441
3442    /// Get middle element of array (μ morpheme)
3443    #[no_mangle]
3444    pub extern "C" fn sigil_array_middle(arr_ptr: i64) -> i64 {
3445        unsafe {
3446            let arr = &*(arr_ptr as *const SigilArray);
3447            if arr.len == 0 {
3448                return 0; // Return 0 for empty array
3449            }
3450            let mid = arr.len / 2;
3451            *arr.data.add(mid)
3452        }
3453    }
3454
3455    /// Get random element of array (χ morpheme)
3456    #[no_mangle]
3457    pub extern "C" fn sigil_array_choice(arr_ptr: i64) -> i64 {
3458        unsafe {
3459            let arr = &*(arr_ptr as *const SigilArray);
3460            if arr.len == 0 {
3461                return 0; // Return 0 for empty array
3462            }
3463            // Simple LCG-based random using time as seed
3464            use std::time::{SystemTime, UNIX_EPOCH};
3465            let seed = SystemTime::now()
3466                .duration_since(UNIX_EPOCH)
3467                .map(|d| d.as_nanos() as u64)
3468                .unwrap_or(12345);
3469            let idx =
3470                ((seed.wrapping_mul(1103515245).wrapping_add(12345)) >> 16) as usize % arr.len;
3471            *arr.data.add(idx)
3472        }
3473    }
3474
3475    /// Get nth element of array (ν morpheme) - same as sigil_array_get but clearer semantics
3476    #[no_mangle]
3477    pub extern "C" fn sigil_array_nth(arr_ptr: i64, index: i64) -> i64 {
3478        sigil_array_get(arr_ptr, index)
3479    }
3480
3481    /// Get next element (iterator advance) - currently returns first element (ξ morpheme)
3482    #[no_mangle]
3483    pub extern "C" fn sigil_array_next(arr_ptr: i64) -> i64 {
3484        // For now, next returns the first element
3485        // A full iterator implementation would track state
3486        sigil_array_first(arr_ptr)
3487    }
3488
3489    /// Product of all elements in array (Π morpheme)
3490    #[no_mangle]
3491    pub extern "C" fn sigil_array_product(arr_ptr: i64) -> i64 {
3492        unsafe {
3493            let arr = &*(arr_ptr as *const SigilArray);
3494            if arr.len == 0 {
3495                return 1; // Product of empty set is 1 (identity)
3496            }
3497            let mut product: i64 = 1;
3498            for i in 0..arr.len {
3499                product = product.wrapping_mul(*arr.data.add(i));
3500            }
3501            product
3502        }
3503    }
3504
3505    /// Sort array in ascending order (σ morpheme) - returns new sorted array
3506    #[no_mangle]
3507    pub extern "C" fn sigil_array_sort(arr_ptr: i64) -> i64 {
3508        unsafe {
3509            let arr = &*(arr_ptr as *const SigilArray);
3510            if arr.len == 0 {
3511                return sigil_array_new(0);
3512            }
3513
3514            // Copy elements to a Vec for sorting
3515            let mut elements: Vec<i64> = Vec::with_capacity(arr.len);
3516            for i in 0..arr.len {
3517                elements.push(*arr.data.add(i));
3518            }
3519
3520            // Sort ascending
3521            elements.sort();
3522
3523            // Create new array with sorted elements
3524            let new_arr = sigil_array_new(arr.len as i64);
3525            for elem in elements {
3526                sigil_array_push(new_arr, elem);
3527            }
3528            new_arr
3529        }
3530    }
3531
3532    // ============================================
3533    // Parallel Execution Functions (∥ morpheme)
3534    // ============================================
3535    // These provide multi-threaded execution of array operations
3536    // For JIT compilation, these use a simple thread pool approach
3537
3538    /// Parallel map operation - applies a transformation in parallel across array elements
3539    /// For now, returns the array unchanged as full closure parallelization
3540    /// requires more complex infrastructure. In production, this would:
3541    /// 1. Partition array into chunks based on available CPU cores
3542    /// 2. Spawn worker threads for each chunk
3543    /// 3. Apply transform closure in parallel
3544    /// 4. Collect results
3545    #[no_mangle]
3546    pub extern "C" fn sigil_parallel_map(arr_ptr: i64) -> i64 {
3547        // Stub: returns array unchanged
3548        // Full implementation would use rayon::par_iter or manual thread pool
3549        arr_ptr
3550    }
3551
3552    /// Parallel filter operation - filters elements in parallel
3553    /// Uses parallel predicate evaluation with stream compaction
3554    #[no_mangle]
3555    pub extern "C" fn sigil_parallel_filter(arr_ptr: i64) -> i64 {
3556        // Stub: returns array unchanged
3557        // Full implementation would:
3558        // 1. Evaluate predicates in parallel
3559        // 2. Use prefix sum for compaction offsets
3560        // 3. Parallel write to output array
3561        arr_ptr
3562    }
3563
3564    /// Parallel reduce operation - tree reduction for associative operations
3565    /// Achieves O(log n) depth with O(n) work
3566    #[no_mangle]
3567    pub extern "C" fn sigil_parallel_reduce(arr_ptr: i64) -> i64 {
3568        // For reduction, we can implement a parallel tree reduction
3569        // Falls back to sequential sum for now
3570        unsafe {
3571            let arr = &*(arr_ptr as *const SigilArray);
3572            if arr.len == 0 {
3573                return 0;
3574            }
3575
3576            // Simple sequential sum - parallel tree reduction would
3577            // use divide-and-conquer with thread spawning
3578            let mut sum: i64 = 0;
3579            for i in 0..arr.len {
3580                sum += *arr.data.add(i);
3581            }
3582            sum
3583        }
3584    }
3585
3586    // ============================================
3587    // GPU Compute Functions (⊛ morpheme)
3588    // ============================================
3589    // These would dispatch operations to GPU via wgpu/vulkan
3590    // Currently stubs that fall back to CPU execution
3591
3592    /// GPU map operation - would compile to WGSL/SPIR-V compute shader
3593    /// Shader structure:
3594    /// ```wgsl
3595    /// @compute @workgroup_size(256)
3596    /// fn main(@builtin(global_invocation_id) id: vec3<u32>) {
3597    ///     let idx = id.x;
3598    ///     output[idx] = transform(input[idx]);
3599    /// }
3600    /// ```
3601    #[no_mangle]
3602    pub extern "C" fn sigil_gpu_map(arr_ptr: i64) -> i64 {
3603        // Stub: returns array unchanged
3604        // Full implementation would:
3605        // 1. Upload array to GPU buffer
3606        // 2. Compile transform to SPIR-V
3607        // 3. Dispatch compute shader
3608        // 4. Download results
3609        arr_ptr
3610    }
3611
3612    /// GPU filter operation with parallel stream compaction
3613    /// Uses scan-based compaction algorithm
3614    #[no_mangle]
3615    pub extern "C" fn sigil_gpu_filter(arr_ptr: i64) -> i64 {
3616        // Stub: returns array unchanged
3617        // Full implementation would use prefix sum for compaction
3618        arr_ptr
3619    }
3620
3621    /// GPU reduce operation - uses tree reduction in shared memory
3622    /// Achieves O(log n) parallel steps
3623    #[no_mangle]
3624    pub extern "C" fn sigil_gpu_reduce(arr_ptr: i64) -> i64 {
3625        // Falls back to CPU reduction
3626        sigil_parallel_reduce(arr_ptr)
3627    }
3628
3629    // ============================================
3630    // Memoization Cache for Recursive Functions
3631    // ============================================
3632    // Uses a simple hash table with linear probing for O(1) average lookup
3633
3634    /// Memoization cache entry
3635    #[repr(C)]
3636    struct MemoEntry {
3637        key1: i64,      // First argument (or hash of multiple args)
3638        key2: i64,      // Second argument (for 2-arg functions)
3639        value: i64,     // Cached result
3640        occupied: bool, // Whether this slot is used
3641    }
3642
3643    /// Memoization cache (fixed-size hash table)
3644    #[repr(C)]
3645    struct MemoCache {
3646        entries: *mut MemoEntry,
3647        capacity: usize,
3648        mask: usize, // capacity - 1, for fast modulo
3649    }
3650
3651    /// Create a new memoization cache
3652    #[no_mangle]
3653    pub extern "C" fn sigil_memo_new(capacity: i64) -> i64 {
3654        let cap = (capacity as usize).next_power_of_two().max(1024);
3655        let layout = std::alloc::Layout::array::<MemoEntry>(cap).unwrap();
3656        let entries = unsafe {
3657            let ptr = std::alloc::alloc_zeroed(layout) as *mut MemoEntry;
3658            ptr
3659        };
3660
3661        let cache = Box::new(MemoCache {
3662            entries,
3663            capacity: cap,
3664            mask: cap - 1,
3665        });
3666        Box::into_raw(cache) as i64
3667    }
3668
3669    /// Hash function for single argument
3670    #[inline]
3671    fn memo_hash_1(key: i64) -> usize {
3672        // FNV-1a inspired hash
3673        let mut h = key as u64;
3674        h = h.wrapping_mul(0x517cc1b727220a95);
3675        h ^= h >> 32;
3676        h as usize
3677    }
3678
3679    /// Hash function for two arguments
3680    #[inline]
3681    fn memo_hash_2(key1: i64, key2: i64) -> usize {
3682        let mut h = key1 as u64;
3683        h = h.wrapping_mul(0x517cc1b727220a95);
3684        h ^= key2 as u64;
3685        h = h.wrapping_mul(0x517cc1b727220a95);
3686        h ^= h >> 32;
3687        h as usize
3688    }
3689
3690    // ============================================
3691    // Optimized Recursive Algorithm Implementations
3692    // ============================================
3693    // These iterative implementations are much faster than recursive versions
3694
3695    /// Iterative Ackermann function using explicit stack
3696    /// Much faster than recursive version - no stack overflow, O(result) space
3697    #[no_mangle]
3698    pub extern "C" fn sigil_ackermann(m: i64, n: i64) -> i64 {
3699        // Use an explicit stack to simulate recursion
3700        let mut stack: Vec<i64> = Vec::with_capacity(1024);
3701        stack.push(m);
3702        let mut n = n;
3703
3704        while let Some(m) = stack.pop() {
3705            if m == 0 {
3706                n = n + 1;
3707            } else if n == 0 {
3708                stack.push(m - 1);
3709                n = 1;
3710            } else {
3711                stack.push(m - 1);
3712                stack.push(m);
3713                n = n - 1;
3714            }
3715        }
3716        n
3717    }
3718
3719    /// Iterative Tak (Takeuchi) function using explicit stack
3720    #[no_mangle]
3721    pub extern "C" fn sigil_tak(x: i64, y: i64, z: i64) -> i64 {
3722        // Use continuation-passing style with explicit stack
3723        #[derive(Clone, Copy)]
3724        enum TakCont {
3725            Eval { x: i64, y: i64, z: i64 },
3726            Cont1 { y: i64, z: i64, x: i64 }, // waiting for tak(x-1,y,z), need y,z,x for later
3727            Cont2 { z: i64, x: i64, y: i64, r1: i64 }, // waiting for tak(y-1,z,x), have r1
3728            Cont3 { r1: i64, r2: i64 },       // waiting for tak(z-1,x,y), have r1,r2
3729        }
3730
3731        let mut stack: Vec<TakCont> = Vec::with_capacity(256);
3732        stack.push(TakCont::Eval { x, y, z });
3733        let mut result: i64 = 0;
3734
3735        while let Some(cont) = stack.pop() {
3736            match cont {
3737                TakCont::Eval { x, y, z } => {
3738                    if y >= x {
3739                        result = z;
3740                    } else {
3741                        // Need to compute tak(tak(x-1,y,z), tak(y-1,z,x), tak(z-1,x,y))
3742                        stack.push(TakCont::Cont1 { y, z, x });
3743                        stack.push(TakCont::Eval { x: x - 1, y, z });
3744                    }
3745                }
3746                TakCont::Cont1 { y, z, x } => {
3747                    let r1 = result;
3748                    stack.push(TakCont::Cont2 { z, x, y, r1 });
3749                    stack.push(TakCont::Eval {
3750                        x: y - 1,
3751                        y: z,
3752                        z: x,
3753                    });
3754                }
3755                TakCont::Cont2 { z, x, y, r1 } => {
3756                    let r2 = result;
3757                    stack.push(TakCont::Cont3 { r1, r2 });
3758                    stack.push(TakCont::Eval {
3759                        x: z - 1,
3760                        y: x,
3761                        z: y,
3762                    });
3763                }
3764                TakCont::Cont3 { r1, r2 } => {
3765                    let r3 = result;
3766                    // Now compute tak(r1, r2, r3)
3767                    stack.push(TakCont::Eval {
3768                        x: r1,
3769                        y: r2,
3770                        z: r3,
3771                    });
3772                }
3773            }
3774        }
3775        result
3776    }
3777
3778    /// Sentinel value for "not found" in memo cache
3779    /// Using i64::MIN + 1 to avoid parser issues with the full MIN value
3780    const MEMO_NOT_FOUND: i64 = -9223372036854775807;
3781
3782    /// Lookup a single-argument function result in cache
3783    /// Returns the cached value, or MEMO_NOT_FOUND if not found
3784    #[no_mangle]
3785    pub extern "C" fn sigil_memo_get_1(cache_ptr: i64, key: i64) -> i64 {
3786        unsafe {
3787            let cache = &*(cache_ptr as *const MemoCache);
3788            let mut idx = memo_hash_1(key) & cache.mask;
3789
3790            // Linear probing with limited search
3791            for _ in 0..32 {
3792                let entry = &*cache.entries.add(idx);
3793                if !entry.occupied {
3794                    return MEMO_NOT_FOUND;
3795                }
3796                if entry.key1 == key {
3797                    return entry.value;
3798                }
3799                idx = (idx + 1) & cache.mask;
3800            }
3801            MEMO_NOT_FOUND
3802        }
3803    }
3804
3805    /// Store a single-argument function result in cache
3806    #[no_mangle]
3807    pub extern "C" fn sigil_memo_set_1(cache_ptr: i64, key: i64, value: i64) {
3808        unsafe {
3809            let cache = &*(cache_ptr as *const MemoCache);
3810            let mut idx = memo_hash_1(key) & cache.mask;
3811
3812            // Linear probing
3813            for _ in 0..32 {
3814                let entry = &mut *cache.entries.add(idx);
3815                if !entry.occupied || entry.key1 == key {
3816                    entry.key1 = key;
3817                    entry.value = value;
3818                    entry.occupied = true;
3819                    return;
3820                }
3821                idx = (idx + 1) & cache.mask;
3822            }
3823            // Cache full at this location, overwrite first slot
3824            let entry = &mut *cache.entries.add(memo_hash_1(key) & cache.mask);
3825            entry.key1 = key;
3826            entry.value = value;
3827            entry.occupied = true;
3828        }
3829    }
3830
3831    /// Lookup a two-argument function result in cache
3832    #[no_mangle]
3833    pub extern "C" fn sigil_memo_get_2(cache_ptr: i64, key1: i64, key2: i64) -> i64 {
3834        unsafe {
3835            let cache = &*(cache_ptr as *const MemoCache);
3836            let mut idx = memo_hash_2(key1, key2) & cache.mask;
3837
3838            for _ in 0..32 {
3839                let entry = &*cache.entries.add(idx);
3840                if !entry.occupied {
3841                    return MEMO_NOT_FOUND;
3842                }
3843                if entry.key1 == key1 && entry.key2 == key2 {
3844                    return entry.value;
3845                }
3846                idx = (idx + 1) & cache.mask;
3847            }
3848            MEMO_NOT_FOUND
3849        }
3850    }
3851
3852    /// Store a two-argument function result in cache
3853    #[no_mangle]
3854    pub extern "C" fn sigil_memo_set_2(cache_ptr: i64, key1: i64, key2: i64, value: i64) {
3855        unsafe {
3856            let cache = &*(cache_ptr as *const MemoCache);
3857            let mut idx = memo_hash_2(key1, key2) & cache.mask;
3858
3859            for _ in 0..32 {
3860                let entry = &mut *cache.entries.add(idx);
3861                if !entry.occupied || (entry.key1 == key1 && entry.key2 == key2) {
3862                    entry.key1 = key1;
3863                    entry.key2 = key2;
3864                    entry.value = value;
3865                    entry.occupied = true;
3866                    return;
3867                }
3868                idx = (idx + 1) & cache.mask;
3869            }
3870            let entry = &mut *cache.entries.add(memo_hash_2(key1, key2) & cache.mask);
3871            entry.key1 = key1;
3872            entry.key2 = key2;
3873            entry.value = value;
3874            entry.occupied = true;
3875        }
3876    }
3877
3878    /// Free a memoization cache
3879    #[no_mangle]
3880    pub extern "C" fn sigil_memo_free(cache_ptr: i64) {
3881        if cache_ptr != 0 {
3882            unsafe {
3883                let cache = Box::from_raw(cache_ptr as *mut MemoCache);
3884                let layout = std::alloc::Layout::array::<MemoEntry>(cache.capacity).unwrap();
3885                std::alloc::dealloc(cache.entries as *mut u8, layout);
3886            }
3887        }
3888    }
3889
3890    // ============================================
3891    // FFI Tests
3892    // ============================================
3893
3894    #[cfg(test)]
3895    mod tests {
3896        use super::*;
3897        use crate::parser::Parser;
3898
3899        #[test]
3900        fn test_extern_block_parsing_and_declaration() {
3901            let source = r#"
3902                extern "C" {
3903                    fn abs(x: c_int) -> c_int;
3904                    fn strlen(s: *const c_char) -> usize;
3905                }
3906
3907                fn main() -> i64 {
3908                    42
3909                }
3910            "#;
3911
3912            let mut compiler = JitCompiler::new().unwrap();
3913            let result = compiler.compile(source);
3914            assert!(
3915                result.is_ok(),
3916                "Failed to compile FFI declarations: {:?}",
3917                result
3918            );
3919
3920            // Check that extern functions were registered
3921            assert!(
3922                compiler.extern_functions.contains_key("abs"),
3923                "abs not declared"
3924            );
3925            assert!(
3926                compiler.extern_functions.contains_key("strlen"),
3927                "strlen not declared"
3928            );
3929
3930            // Check abs signature
3931            let abs_sig = compiler.extern_functions.get("abs").unwrap();
3932            assert_eq!(abs_sig.params.len(), 1);
3933            assert_eq!(abs_sig.params[0], types::I32); // c_int -> i32
3934            assert_eq!(abs_sig.returns, Some(types::I32));
3935
3936            // Check strlen signature
3937            let strlen_sig = compiler.extern_functions.get("strlen").unwrap();
3938            assert_eq!(strlen_sig.params.len(), 1);
3939            assert_eq!(strlen_sig.params[0], types::I64); // pointer -> i64
3940            assert_eq!(strlen_sig.returns, Some(types::I64)); // usize -> i64
3941        }
3942
3943        #[test]
3944        fn test_extern_variadic_function() {
3945            let source = r#"
3946                extern "C" {
3947                    fn printf(fmt: *const c_char, ...) -> c_int;
3948                }
3949
3950                fn main() -> i64 {
3951                    0
3952                }
3953            "#;
3954
3955            let mut compiler = JitCompiler::new().unwrap();
3956            let result = compiler.compile(source);
3957            assert!(
3958                result.is_ok(),
3959                "Failed to compile variadic FFI: {:?}",
3960                result
3961            );
3962
3963            let printf_sig = compiler.extern_functions.get("printf").unwrap();
3964            assert!(printf_sig.variadic, "printf should be variadic");
3965        }
3966
3967        #[test]
3968        fn test_extern_c_abi_only() {
3969            let source = r#"
3970                extern "Rust" {
3971                    fn some_func(x: i32) -> i32;
3972                }
3973
3974                fn main() -> i64 {
3975                    0
3976                }
3977            "#;
3978
3979            let mut compiler = JitCompiler::new().unwrap();
3980            let result = compiler.compile(source);
3981            assert!(result.is_err(), "Should reject non-C ABI");
3982            assert!(result.unwrap_err().contains("Unsupported ABI"));
3983        }
3984
3985        #[test]
3986        fn test_c_type_mapping() {
3987            // Test that C types are correctly mapped to Cranelift types
3988            let test_cases = vec![
3989                ("c_char", types::I8),
3990                ("c_int", types::I32),
3991                ("c_long", types::I64),
3992                ("c_float", types::F32),
3993                ("c_double", types::F64),
3994                ("size_t", types::I64),
3995                ("i32", types::I32),
3996                ("f64", types::F64),
3997            ];
3998
3999            for (type_name, expected_cl_type) in test_cases {
4000                let source = format!(
4001                    r#"
4002                    extern "C" {{
4003                        fn test_func(x: {}) -> {};
4004                    }}
4005
4006                    fn main() -> i64 {{ 0 }}
4007                "#,
4008                    type_name, type_name
4009                );
4010
4011                let mut compiler = JitCompiler::new().unwrap();
4012                let result = compiler.compile(&source);
4013                assert!(
4014                    result.is_ok(),
4015                    "Failed for type {}: {:?}",
4016                    type_name,
4017                    result
4018                );
4019
4020                let sig = compiler.extern_functions.get("test_func").unwrap();
4021                assert_eq!(
4022                    sig.params[0], expected_cl_type,
4023                    "Wrong param type for {}",
4024                    type_name
4025                );
4026                assert_eq!(
4027                    sig.returns,
4028                    Some(expected_cl_type),
4029                    "Wrong return type for {}",
4030                    type_name
4031                );
4032            }
4033        }
4034    }
4035}
4036
4037// Re-export for convenience
4038#[cfg(feature = "jit")]
4039pub use jit::JitCompiler;