1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use std::ops::ControlFlow;

use num_traits::Num;
#[cfg(feature = "rayon")]
use rayon::join;

use crate::{contains, split, KdTree, Object, Point};

/// Defines a spatial query by its axis-aligned bounding box (AABB) and a method to test a single point
///
/// The AABB of the query is used to limit the points which are tested and therefore the AABB should be as tight as possible while staying aligned to the coordinate axes.
/// The test method itself can then be relatively expensive like determining the distance of the given position to an arbitrary polygon.
///
/// A very simple example of implementing this trait is [`WithinBoundingBox`] whereas a very common example is [`WithinDistance`].
pub trait Query<P: Point> {
    /// Return the axis-aligned bounding box (AABB) of the query
    ///
    /// Represented by the corners with first the smallest and then the largest coordinate values.
    ///
    /// Note that calling this method is assumed to be cheap, returning a reference to an AABB stored in the interior of the object.
    fn aabb(&self) -> &(P, P);

    /// Check whether a given `position` inside the [axis-aligned bounding box (AABB)][Self::aabb] machtes the query.
    fn test(&self, position: &P) -> bool;
}

/// A query which yields all objects within a given axis-aligned boundary box (AABB) in `N`-dimensional space
#[derive(Debug)]
pub struct WithinBoundingBox<T, const N: usize> {
    aabb: ([T; N], [T; N]),
}

impl<T, const N: usize> WithinBoundingBox<T, N> {
    /// Construct a query from first the corner smallest coordinate values `lower` and then the corner with the largest coordinate values `upper`
    pub fn new(lower: [T; N], upper: [T; N]) -> Self {
        Self {
            aabb: (lower, upper),
        }
    }
}

impl<T, const N: usize> Query<[T; N]> for WithinBoundingBox<T, N>
where
    T: Num + Copy + PartialOrd,
{
    fn aabb(&self) -> &([T; N], [T; N]) {
        &self.aabb
    }

    fn test(&self, _position: &[T; N]) -> bool {
        true
    }
}

/// A query which yields all objects within a given distance to a central point in `N`-dimensional real space
#[derive(Debug)]
pub struct WithinDistance<T, const N: usize> {
    aabb: ([T; N], [T; N]),
    center: [T; N],
    distance_2: T,
}

impl<T, const N: usize> WithinDistance<T, N>
where
    T: Num + Copy + PartialOrd,
{
    /// Construct a query from the `center` and the largest allowed Euclidean `distance` to it
    pub fn new(center: [T; N], distance: T) -> Self {
        Self {
            aabb: (
                center.map(|coord| coord - distance),
                center.map(|coord| coord + distance),
            ),
            center,
            distance_2: distance * distance,
        }
    }
}

impl<T, const N: usize> Query<[T; N]> for WithinDistance<T, N>
where
    T: Num + Copy + PartialOrd,
{
    fn aabb(&self) -> &([T; N], [T; N]) {
        &self.aabb
    }

    fn test(&self, position: &[T; N]) -> bool {
        self.center.distance_2(position) <= self.distance_2
    }
}

impl<O, S> KdTree<O, S>
where
    O: Object,
    S: AsRef<[O]>,
{
    /// Find objects matching the given `query`
    ///
    /// Queries are defined by passing an implementor of the [`Query`] trait.
    ///
    /// Objects matching the `query` are passed to the `visitor` as they are found.
    /// Depending on its [return value][`ControlFlow`], the search is continued or stopped.
    pub fn look_up<'a, Q, V>(&'a self, query: &Q, visitor: V) -> ControlFlow<()>
    where
        Q: Query<O::Point>,
        V: FnMut(&'a O) -> ControlFlow<()>,
    {
        let objects = self.objects.as_ref();

        if !objects.is_empty() {
            look_up(&mut LookUpArgs { query, visitor }, objects, 0)?;
        }

        ControlFlow::Continue(())
    }

    #[cfg(feature = "rayon")]
    /// Find objects matching the given `query`, in parallel
    ///
    /// Queries are defined by passing an implementor of the [`Query`] trait.
    ///
    /// Objects matching the `query` are passed to the `visitor` as they are found.
    /// In contrast to the [serial version][Self::look_up], the search cannot be stopped early.
    ///
    /// Requires the `rayon` feature and dispatches tasks into the current [thread pool][rayon::ThreadPool].
    pub fn par_look_up<'a, Q, V>(&'a self, query: &Q, visitor: V)
    where
        O: Send + Sync,
        O::Point: Sync,
        Q: Query<O::Point> + Sync,
        V: Fn(&'a O) + Sync,
    {
        let objects = self.objects.as_ref();

        if !objects.is_empty() {
            par_look_up(&LookUpArgs { query, visitor }, objects, 0);
        }
    }
}

struct LookUpArgs<'a, Q, V> {
    query: &'a Q,
    visitor: V,
}

fn look_up<'a, O, Q, V>(
    args: &mut LookUpArgs<Q, V>,
    mut objects: &'a [O],
    mut axis: usize,
) -> ControlFlow<()>
where
    O: Object,
    Q: Query<O::Point>,
    V: FnMut(&'a O) -> ControlFlow<()>,
{
    loop {
        let (left, object, right) = split(objects);

        let position = object.position();

        if contains(args.query.aabb(), position) && args.query.test(position) {
            (args.visitor)(object)?;
        }

        let search_left =
            !left.is_empty() && args.query.aabb().0.coord(axis) <= position.coord(axis);

        let search_right =
            !right.is_empty() && position.coord(axis) <= args.query.aabb().1.coord(axis);

        axis = (axis + 1) % O::Point::DIM;

        match (search_left, search_right) {
            (true, true) => {
                look_up(args, left, axis)?;

                objects = right;
            }
            (true, false) => objects = left,
            (false, true) => objects = right,
            (false, false) => return ControlFlow::Continue(()),
        }
    }
}

#[cfg(feature = "rayon")]
fn par_look_up<'a, O, Q, V>(args: &LookUpArgs<Q, V>, mut objects: &'a [O], mut axis: usize)
where
    O: Object + Send + Sync,
    O::Point: Sync,
    Q: Query<O::Point> + Sync,
    V: Fn(&'a O) + Sync,
{
    loop {
        let (left, object, right) = split(objects);

        let position = object.position();

        if contains(args.query.aabb(), position) && args.query.test(position) {
            (args.visitor)(object);
        }

        let search_left =
            !left.is_empty() && args.query.aabb().0.coord(axis) <= position.coord(axis);

        let search_right =
            !right.is_empty() && position.coord(axis) <= args.query.aabb().1.coord(axis);

        axis = (axis + 1) % O::Point::DIM;

        match (search_left, search_right) {
            (true, true) => {
                join(
                    || par_look_up(args, left, axis),
                    || par_look_up(args, right, axis),
                );

                return;
            }
            (true, false) => objects = left,
            (false, true) => objects = right,
            (false, false) => return,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[cfg(feature = "rayon")]
    use std::sync::Mutex;

    use proptest::{collection::vec, strategy::Strategy, test_runner::TestRunner};

    use crate::tests::{random_objects, random_points};

    pub fn random_queries(len: usize) -> impl Strategy<Value = Vec<WithinDistance<f32, 2>>> {
        (random_points(len), vec(0.0_f32..=1.0, len)).prop_map(|(centers, distances)| {
            centers
                .into_iter()
                .zip(distances)
                .map(|(center, distance)| WithinDistance::new(center, distance))
                .collect()
        })
    }

    #[test]
    fn random_look_up() {
        TestRunner::default()
            .run(
                &(random_objects(100), random_queries(10)),
                |(objects, queries)| {
                    let index = KdTree::new(objects);

                    for query in queries {
                        let mut results1 = index
                            .iter()
                            .filter(|object| query.test(object.position()))
                            .collect::<Vec<_>>();

                        let mut results2 = Vec::new();
                        index.look_up(&query, |object| {
                            results2.push(object);
                            ControlFlow::Continue(())
                        });

                        results1.sort_unstable();
                        results2.sort_unstable();
                        assert_eq!(results1, results2);
                    }

                    Ok(())
                },
            )
            .unwrap();
    }

    #[cfg(feature = "rayon")]
    #[test]
    fn random_par_look_up() {
        TestRunner::default()
            .run(
                &(random_objects(100), random_queries(10)),
                |(objects, queries)| {
                    let index = KdTree::par_new(objects);

                    for query in queries {
                        let mut results1 = index
                            .iter()
                            .filter(|object| query.test(object.position()))
                            .collect::<Vec<_>>();

                        let results2 = Mutex::new(Vec::new());
                        index.par_look_up(&query, |object| {
                            results2.lock().unwrap().push(object);
                        });
                        let mut results2 = results2.into_inner().unwrap();

                        results1.sort_unstable();
                        results2.sort_unstable();
                        assert_eq!(results1, results2);
                    }

                    Ok(())
                },
            )
            .unwrap();
    }
}