1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
//! uSIF: Unsupervised Smooth Inverse Frequency + Piecewise Common Component Removal.
use anyhow::{anyhow, Result};
use ndarray::Array1;
use ndarray::Array2;
use crate::util;
use crate::Float;
use crate::SentenceEmbedder;
use crate::WordEmbeddings;
use crate::WordProbabilities;
use crate::DEFAULT_N_SAMPLES_TO_FIT;
use crate::DEFAULT_SEPARATOR;
/// Default value of the number of principal components,
/// following the original setting.
pub const DEFAULT_N_COMPONENTS: usize = 5;
const FLOAT_0_5: Float = 0.5;
const MODEL_MAGIC: &[u8] = b"sif_embedding::USif 0.6\n";
/// An implementation of *Unsupervised Smooth Inverse Frequency* and *Piecewise Common Component Removal*,
/// simple but pewerful techniques for sentence embeddings described in the paper:
/// Kawin Ethayarajh,
/// [Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline](https://aclanthology.org/W18-3012/),
/// RepL4NLP 2018.
///
/// # Brief description of API
///
/// The algorithm consists of two steps:
///
/// 1. Compute sentence embeddings with the uSIF weighting.
/// 2. Remove the common components from the sentence embeddings.
///
/// The weighting parameter and common components are computed from input sentences.
///
/// Our API is designed to allow reuse of these values once computed
/// because it is not always possible to obtain a sufficient number of sentences as queries to compute.
///
/// [`USif::fit`] computes these values from input sentences and returns a fitted instance of [`USif`].
/// [`USif::embeddings`] computes sentence embeddings with the fitted values.
///
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use std::io::BufReader;
///
/// use finalfusion::compat::text::ReadText;
/// use finalfusion::embeddings::Embeddings;
/// use wordfreq::WordFreq;
///
/// use sif_embedding::{USif, SentenceEmbedder};
///
/// // Loads word embeddings from a pretrained model.
/// let word_embeddings_text = "las 0.0 1.0 2.0\nvegas -3.0 -4.0 -5.0\n";
/// let mut reader = BufReader::new(word_embeddings_text.as_bytes());
/// let word_embeddings = Embeddings::read_text(&mut reader)?;
///
/// // Loads word probabilities from a pretrained model.
/// let word_probs = WordFreq::new([("las", 0.4), ("vegas", 0.6)]);
///
/// // Prepares input sentences.
/// let sentences = ["las vegas", "mega vegas"];
///
/// // Fits the model with input sentences.
/// let model = USif::new(&word_embeddings, &word_probs);
/// let model = model.fit(&sentences)?;
///
/// // Computes sentence embeddings in shape (n, m),
/// // where n is the number of sentences and m is the number of dimensions.
/// let sent_embeddings = model.embeddings(sentences)?;
/// assert_eq!(sent_embeddings.shape(), &[2, 3]);
/// # Ok(())
/// # }
/// ```
///
/// ## Only uSIF weighting
///
/// If you want to apply only the uSIF weighting to avoid the computation of common components,
/// use [`USif::with_parameters`] and set `n_components` to `0`.
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use std::io::BufReader;
///
/// use finalfusion::compat::text::ReadText;
/// use finalfusion::embeddings::Embeddings;
/// use wordfreq::WordFreq;
///
/// use sif_embedding::{USif, SentenceEmbedder};
///
/// // Loads word embeddings from a pretrained model.
/// let word_embeddings_text = "las 0.0 1.0 2.0\nvegas -3.0 -4.0 -5.0\n";
/// let mut reader = BufReader::new(word_embeddings_text.as_bytes());
/// let word_embeddings = Embeddings::read_text(&mut reader)?;
///
/// // Loads word probabilities from a pretrained model.
/// let word_probs = WordFreq::new([("las", 0.4), ("vegas", 0.6)]);
///
/// // Prepares input sentences.
/// let sentences = ["las vegas", "mega vegas"];
///
/// // When setting `n_components` to `0`, no common components are removed.
/// let model = USif::with_parameters(&word_embeddings, &word_probs, 0);
/// let model = model.fit(&sentences)?;
/// let sent_embeddings = model.embeddings(sentences)?;
/// assert_eq!(sent_embeddings.shape(), &[2, 3]);
/// # Ok(())
/// # }
/// ```
///
/// ## Serialization of fitted parameters
///
/// If you want to serialize and deserialize the fitted parameters,
/// use [`USif::serialize`] and [`USif::deserialize`].
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use std::io::BufReader;
///
/// use approx::assert_relative_eq;
/// use finalfusion::compat::text::ReadText;
/// use finalfusion::embeddings::Embeddings;
/// use wordfreq::WordFreq;
///
/// use sif_embedding::{USif, SentenceEmbedder};
///
/// // Loads word embeddings from a pretrained model.
/// let word_embeddings_text = "las 0.0 1.0 2.0\nvegas -3.0 -4.0 -5.0\n";
/// let mut reader = BufReader::new(word_embeddings_text.as_bytes());
/// let word_embeddings = Embeddings::read_text(&mut reader)?;
///
/// // Loads word probabilities from a pretrained model.
/// let word_probs = WordFreq::new([("las", 0.4), ("vegas", 0.6)]);
///
/// // Prepares input sentences.
/// let sentences = ["las vegas", "mega vegas"];
///
/// // Fits the model and computes sentence embeddings.
/// let model = USif::new(&word_embeddings, &word_probs);
/// let model = model.fit(&sentences)?;
/// let sent_embeddings = model.embeddings(&sentences)?;
///
/// // Serializes and deserializes the fitted parameters.
/// let bytes = model.serialize()?;
/// let other = USif::deserialize(&bytes, &word_embeddings, &word_probs)?;
/// let other_embeddings = other.embeddings(&sentences)?;
/// assert_relative_eq!(sent_embeddings, other_embeddings);
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
pub struct USif<'w, 'p, W, P> {
word_embeddings: &'w W,
word_probs: &'p P,
n_components: usize,
param_a: Option<Float>,
weights: Option<Array1<Float>>,
common_components: Option<Array2<Float>>,
separator: char,
n_samples_to_fit: usize,
}
impl<'w, 'p, W, P> USif<'w, 'p, W, P>
where
W: WordEmbeddings,
P: WordProbabilities,
{
/// Creates a new instance with default parameters defined by
/// [`DEFAULT_N_COMPONENTS`].
///
/// # Arguments
///
/// * `word_embeddings` - Word embeddings.
/// * `word_probs` - Word probabilities.
pub const fn new(word_embeddings: &'w W, word_probs: &'p P) -> Self {
Self {
word_embeddings,
word_probs,
n_components: DEFAULT_N_COMPONENTS,
param_a: None,
weights: None,
common_components: None,
separator: DEFAULT_SEPARATOR,
n_samples_to_fit: DEFAULT_N_SAMPLES_TO_FIT,
}
}
/// Creates a new instance with manually specified parameters.
///
/// # Arguments
///
/// * `word_embeddings` - Word embeddings.
/// * `word_probs` - Word probabilities.
/// * `n_components` - The number of principal components to remove.
///
/// When setting `n_components` to `0`, no principal components are removed.
pub const fn with_parameters(
word_embeddings: &'w W,
word_probs: &'p P,
n_components: usize,
) -> Self {
Self {
word_embeddings,
word_probs,
n_components,
param_a: None,
weights: None,
common_components: None,
separator: DEFAULT_SEPARATOR,
n_samples_to_fit: DEFAULT_N_SAMPLES_TO_FIT,
}
}
/// Sets a separator for sentence segmentation (default: [`DEFAULT_SEPARATOR`]).
pub const fn separator(mut self, separator: char) -> Self {
self.separator = separator;
self
}
/// Sets the number of samples to fit the model (default: [`DEFAULT_N_SAMPLES_TO_FIT`]).
///
/// # Errors
///
/// Returns an error if `n_samples_to_fit` is 0.
pub fn n_samples_to_fit(mut self, n_samples_to_fit: usize) -> Result<Self> {
if n_samples_to_fit == 0 {
return Err(anyhow!("n_samples_to_fit must not be 0."));
}
self.n_samples_to_fit = n_samples_to_fit;
Ok(self)
}
/// Computes the average length of sentences.
/// (Line 3 in Algorithm 1)
fn average_sentence_length<S>(&self, sentences: &[S]) -> Float
where
S: AsRef<str>,
{
let mut n_words = 0;
for sent in sentences {
let sent = sent.as_ref();
n_words += sent.split(self.separator).count();
}
n_words as Float / sentences.len() as Float
}
/// Estimates the parameter `a` for the weight function.
/// The returned value is always a positive number.
/// (Lines 5--7 in Algorithm 1)
fn estimate_param_a(&self, sent_len: Float) -> Float {
debug_assert!(sent_len > 0.);
let vocab_size = self.word_probs.n_words() as Float;
let threshold = 1. - (1. - (1. / vocab_size)).powf(sent_len);
let n_greater = self
.word_probs
.entries()
.filter(|(_, prob)| *prob > threshold)
.count() as Float;
let alpha = n_greater / vocab_size;
let partiion = 0.5 * vocab_size;
let param_a = (1. - alpha) / alpha.mul_add(partiion, Float::EPSILON); // avoid division by zero.
param_a.max(Float::EPSILON) // avoid returning zero.
}
/// Applies SIF-weighting for sentences.
/// (Line 8 in Algorithm 1)
fn weighted_embeddings<I, S>(&self, sentences: I, param_a: Float) -> Array2<Float>
where
I: IntoIterator<Item = S>,
S: AsRef<str>,
{
debug_assert!(param_a > 0.);
let mut sent_embeddings = vec![];
let mut n_sentences = 0;
for sent in sentences {
let sent_embedding = self.weighted_embedding(sent.as_ref(), param_a);
sent_embeddings.extend(sent_embedding.iter());
n_sentences += 1;
}
Array2::from_shape_vec((n_sentences, self.embedding_size()), sent_embeddings).unwrap()
}
/// Applies SIF-weighting for a sentence.
/// (Line 8 in Algorithm 1)
fn weighted_embedding(&self, sent: &str, param_a: Float) -> Array1<Float> {
debug_assert!(param_a > 0.);
// 1. Extract word embeddings and weights.
let mut n_words = 0;
let mut word_embeddings: Vec<Float> = vec![];
let mut word_weights: Vec<Float> = vec![];
for word in sent.split(self.separator) {
if let Some(word_embedding) = self.word_embeddings.embedding(word) {
word_embeddings.extend(word_embedding.iter());
word_weights
.push(param_a / FLOAT_0_5.mul_add(param_a, self.word_probs.probability(word)));
n_words += 1;
}
}
// If no parseable tokens, return a vector of a's
if n_words == 0 {
return Array1::zeros(self.embedding_size()) + param_a;
}
// 2. Convert to nd-arrays.
let word_embeddings =
Array2::from_shape_vec((n_words, self.embedding_size()), word_embeddings).unwrap();
let word_weights = Array2::from_shape_vec((n_words, 1), word_weights).unwrap();
// 3. Normalize word embeddings.
let axis = ndarray_linalg::norm::NormalizeAxis::Column; // equivalent to Axis(0)
let (mut word_embeddings, _) = ndarray_linalg::norm::normalize(word_embeddings, axis);
// NOTE: It appears that the normalization above sometimes produces NaNs.
// This is a workaround, but I don't know this is correct.
word_embeddings.mapv_inplace(|x| if x.is_nan() { 0. } else { x });
// 4. Weight word embeddings.
word_embeddings *= &word_weights;
// 5. Average word embeddings.
word_embeddings.mean_axis(ndarray::Axis(0)).unwrap()
}
/// Estimates the principal components of sentence embeddings.
/// (Lines 11--17 in Algorithm 1)
///
/// NOTE: Principal components can be empty iff sentence embeddings are all zeros.
fn estimate_principal_components(
&self,
sent_embeddings: &Array2<Float>,
) -> (Array1<Float>, Array2<Float>) {
let (singular_values, singular_vectors) =
util::principal_components(sent_embeddings, self.n_components);
let singular_weights = singular_values.mapv(|v| v.powi(2));
let singular_weights = singular_weights.to_owned() / singular_weights.sum();
(singular_weights, singular_vectors)
}
/// Serializes the model.
pub fn serialize(&self) -> Result<Vec<u8>> {
let mut bytes = Vec::new();
bytes.extend_from_slice(MODEL_MAGIC);
bincode::serialize_into(&mut bytes, &self.n_components)?;
bincode::serialize_into(&mut bytes, &self.param_a)?;
bincode::serialize_into(&mut bytes, &self.weights)?;
bincode::serialize_into(&mut bytes, &self.common_components)?;
bincode::serialize_into(&mut bytes, &self.separator)?;
bincode::serialize_into(&mut bytes, &self.n_samples_to_fit)?;
Ok(bytes)
}
/// Deserializes the model.
///
/// # Arguments
///
/// * `bytes` - Byte sequence exported by [`Self::serialize`].
/// * `word_embeddings` - Word embeddings.
/// * `word_probs` - Word probabilities.
///
/// `word_embeddings` and `word_probs` must be the same as those used in serialization.
pub fn deserialize(bytes: &[u8], word_embeddings: &'w W, word_probs: &'p P) -> Result<Self> {
if !bytes.starts_with(MODEL_MAGIC) {
return Err(anyhow!("The magic number of the input model mismatches."));
}
let mut bytes = &bytes[MODEL_MAGIC.len()..];
let n_components = bincode::deserialize_from(&mut bytes)?;
let param_a = bincode::deserialize_from(&mut bytes)?;
let weights = bincode::deserialize_from(&mut bytes)?;
let common_components = bincode::deserialize_from(&mut bytes)?;
let separator = bincode::deserialize_from(&mut bytes)?;
let n_samples_to_fit = bincode::deserialize_from(&mut bytes)?;
Ok(Self {
word_embeddings,
word_probs,
n_components,
param_a,
weights,
common_components,
separator,
n_samples_to_fit,
})
}
}
impl<'w, 'p, W, P> SentenceEmbedder for USif<'w, 'p, W, P>
where
W: WordEmbeddings,
P: WordProbabilities,
{
/// Returns the number of dimensions for sentence embeddings,
/// which is the same as the number of dimensions for word embeddings.
fn embedding_size(&self) -> usize {
self.word_embeddings.embedding_size()
}
/// Fits the model with input sentences.
///
/// Sentences to fit are randomly sampled from `sentences` with [`Self::n_samples_to_fit`].
///
/// # Errors
///
/// Returns an error if `sentences` is empty.
fn fit<S>(mut self, sentences: &[S]) -> Result<Self>
where
S: AsRef<str>,
{
if sentences.is_empty() {
return Err(anyhow!("Input sentences must not be empty."));
}
let sentences = util::sample_sentences(sentences, self.n_samples_to_fit);
// SIF-weighting.
let sent_len = self.average_sentence_length(&sentences);
if sent_len == 0. {
return Err(anyhow!("Input sentences must not be empty."));
}
let param_a = self.estimate_param_a(sent_len);
let sent_embeddings = self.weighted_embeddings(sentences, param_a);
self.param_a = Some(param_a);
// Common component removal.
if self.n_components != 0 {
let (weights, common_components) = self.estimate_principal_components(&sent_embeddings);
self.weights = Some(weights);
self.common_components = Some(common_components);
}
// NOTE: There is no need to set weights and common_components to None.
// because n_components can be set up only in initialization.
Ok(self)
}
/// Computes embeddings for input sentences using the fitted model.
///
/// # Errors
///
/// Returns an error if the model is not fitted.
fn embeddings<I, S>(&self, sentences: I) -> Result<Array2<Float>>
where
I: IntoIterator<Item = S>,
S: AsRef<str>,
{
if self.param_a.is_none() {
return Err(anyhow!("The model is not fitted."));
}
// SIF-weighting.
let sent_embeddings = self.weighted_embeddings(sentences, self.param_a.unwrap());
if sent_embeddings.is_empty() {
return Ok(sent_embeddings);
}
if self.n_components == 0 {
return Ok(sent_embeddings);
}
// Common component removal.
let weights = self.weights.as_ref().unwrap();
let common_components = self.common_components.as_ref().unwrap();
let sent_embeddings =
util::remove_principal_components(&sent_embeddings, common_components, Some(weights));
Ok(sent_embeddings)
}
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
use ndarray::{arr1, CowArray, Ix1};
struct SimpleWordEmbeddings {}
impl WordEmbeddings for SimpleWordEmbeddings {
fn embedding(&self, word: &str) -> Option<CowArray<Float, Ix1>> {
match word {
"A" => Some(arr1(&[1., 2., 3.]).into()),
"BB" => Some(arr1(&[4., 5., 6.]).into()),
"CCC" => Some(arr1(&[7., 8., 9.]).into()),
"DDDD" => Some(arr1(&[10., 11., 12.]).into()),
_ => None,
}
}
fn embedding_size(&self) -> usize {
3
}
}
struct SimpleWordProbabilities {}
impl WordProbabilities for SimpleWordProbabilities {
fn probability(&self, word: &str) -> Float {
match word {
"A" => 0.6,
"BB" => 0.2,
"CCC" => 0.1,
"DDDD" => 0.1,
_ => 0.,
}
}
fn n_words(&self) -> usize {
4
}
fn entries(&self) -> Box<dyn Iterator<Item = (String, Float)> + '_> {
Box::new(
[("A", 0.6), ("BB", 0.2), ("CCC", 0.1), ("DDDD", 0.1)]
.iter()
.map(|&(word, prob)| (word.to_string(), prob)),
)
}
}
#[test]
fn test_basic() {
let word_embeddings = SimpleWordEmbeddings {};
let word_probs = SimpleWordProbabilities {};
let sif = USif::new(&word_embeddings, &word_probs)
.fit(&["A BB CCC DDDD", "BB CCC", "A B C", "Z", ""])
.unwrap();
let sent_embeddings = sif
.embeddings(["A BB CCC DDDD", "BB CCC", "A B C", "Z", ""])
.unwrap();
assert_ne!(sent_embeddings, Array2::zeros((5, 3)));
let sent_embeddings = sif.embeddings(Vec::<&str>::new()).unwrap();
assert_eq!(sent_embeddings.shape(), &[0, 3]);
let sent_embeddings = sif.embeddings([""]).unwrap();
assert_ne!(sent_embeddings, Array2::zeros((1, 3)));
}
#[test]
fn test_separator() {
let word_embeddings = SimpleWordEmbeddings {};
let word_probs = SimpleWordProbabilities {};
let sentences_1 = &["A BB CCC DDDD", "BB CCC", "A B C", "Z", ""];
let sentences_2 = &["A,BB,CCC,DDDD", "BB,CCC", "A,B,C", "Z", ""];
let sif = USif::new(&word_embeddings, &word_probs);
let sif = sif.fit(sentences_1).unwrap();
let embeddings_1 = sif.embeddings(sentences_1).unwrap();
let sif = sif.separator(',');
let embeddings_2 = sif.embeddings(sentences_2).unwrap();
assert_relative_eq!(embeddings_1, embeddings_2);
}
#[test]
fn test_no_fitted() {
let word_embeddings = SimpleWordEmbeddings {};
let word_probs = SimpleWordProbabilities {};
let sentences = &["A BB CCC DDDD", "BB CCC", "A B C", "Z", ""];
let sif = USif::new(&word_embeddings, &word_probs);
let embeddings = sif.embeddings(sentences);
assert!(embeddings.is_err());
}
#[test]
fn test_empty_fit() {
let word_embeddings = SimpleWordEmbeddings {};
let word_probs = SimpleWordProbabilities {};
let sif = USif::new(&word_embeddings, &word_probs);
let sif = sif.fit(&Vec::<&str>::new());
assert!(sif.is_err());
}
#[test]
fn test_io() {
let word_embeddings = SimpleWordEmbeddings {};
let word_probs = SimpleWordProbabilities {};
let sentences = ["A BB CCC DDDD", "BB CCC", "A B C", "Z", ""];
let model_a = USif::new(&word_embeddings, &word_probs)
.fit(&sentences)
.unwrap();
let bytes = model_a.serialize().unwrap();
let model_b = USif::deserialize(&bytes, &word_embeddings, &word_probs).unwrap();
let embeddings_a = model_a.embeddings(sentences).unwrap();
let embeddings_b = model_b.embeddings(sentences).unwrap();
assert_relative_eq!(embeddings_a, embeddings_b);
}
}