1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
//! # si-scale
//!
//! [](https://crates.io/crates/si-scale)
//! [](https://docs.rs/si-scale)
//! [](https://rust-lang.github.io/rfcs/2495-min-rust-version.html)
//! [](https://github.com/u0xy/si-scale/actions)
//!
//! Format value with units according to SI ([système international d'unités](https://en.wikipedia.org/wiki/International_System_of_Units)).
//!
//! _Version requirement: rustc 1.50+_
//!
//! ```toml
//! [dependencies]
//! si-scale = "0.1"
//! ```
//!
//!
//! ## Getting started
//!
//! This crate parses and formats numbers using the [SI Scales](https://en.wikipedia.org/wiki/International_System_of_Units):
//! from 1 y (yocto, i.e. 1e-24) to 1 Y (Yotta, i.e. 1e24). It is essentially
//! agnostic of units per-se; you can totally keep representing units with
//! strings or [uom](https://crates.io/crates/uom), or something else.
//!
//! You can use one of the predefined helper functions to format numbers:
//! [`seconds()`][`crate::helpers::seconds()`],
//! [`bytes()`][`crate::helpers::bytes()`],
//! [`bibytes()`][`crate::helpers::bibytes()`]:
//!
//! ```
//! use si_scale::helpers::{seconds, seconds3};
//!
//! let actual = format!("{}", seconds(1.3e-5));
//! let expected = "13 µs";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("{}", seconds3(1.3e-5));
//! let expected = "13.000 µs";
//! assert_eq!(actual, expected);
//! ```
//!
//! To define your own format function, use the
//! [`scale_fn!()`][`crate::scale_fn!()`] macro. For instance, let's define a
//! formatting function for bits per sec which prints the mantissa with 2
//! decimals, and also uses base 1024 (where 1 ki = 1024). Note that although
//! we define the function in a separate module, this is not a requirement.
//!
//! ```
//! mod unit_fmt {
//! use si_scale::scale_fn;
//! use si_scale::prelude::Value;
//!
//! // defines the `bits_per_sec()` function
//! scale_fn!(bits_per_sec,
//! base: B1024,
//! constraint: UnitAndAbove,
//! mantissa_fmt: "{:.2}",
//! groupings: '_',
//! unit: "bit/s");
//! }
//!
//! use unit_fmt::bits_per_sec;
//!
//! fn main() {
//! let x = 2.1 * 1024 as f32;
//! let actual = format!("throughput: {:>15}", bits_per_sec(x));
//! let expected = "throughput: 2.10 kibit/s";
//! assert_eq!(actual, expected);
//!
//! let x = 2;
//! let actual = format!("throughput: {}", bits_per_sec(x));
//! let expected = "throughput: 2.00 bit/s";
//! assert_eq!(actual, expected);
//! }
//!
//! ```
//!
//!
//! ## SI Scales
//!
//! With base = 1000, 1k = 1000, 1M = 1\_000\_000, 1m = 0.001, 1µ = 0.000\_001,
//! etc.
//!
//! | min (incl.) | max (excl.) | magnitude | prefix |
//! | --- | --- | --- | ---- |
//! | .. | .. | -24 | `Prefix::Yocto` |
//! | .. | .. | -21 | `Prefix::Zepto` |
//! | .. | .. | -18 | `Prefix::Atto` |
//! | .. | .. | -15 | `Prefix::Femto` |
//! | .. | .. | -12 | `Prefix::Pico` |
//! | .. | .. | -9 | `Prefix::Nano` |
//! | 0.000\_001 | 0.001 | -6 | `Prefix::Micro` |
//! | 0.001 | 1 | -3 | `Prefix::Milli` |
//! | 1 | 1_000 | 0 | `Prefix::Unit` |
//! | 1000 | 1\_000\_000 | 3 | `Prefix::Kilo` |
//! | 1\_000\_000 | 1\_000\_000\_000 | 6 | `Prefix::Mega` |
//! | .. | .. | 9 | `Prefix::Giga` |
//! | .. | .. | 12 | `Prefix::Tera` |
//! | .. | .. | 15 | `Prefix::Peta` |
//! | .. | .. | 18 | `Prefix::Exa` |
//! | .. | .. | 21 | `Prefix::Zetta` |
//! | .. | .. | 24 | `Prefix::Yotta` |
//!
//!
//! The base is usually 1000, but can also be 1024 (bibytes).
//!
//! With base = 1024, 1ki = 1024, 1Mi = 1024 * 1024, etc.
//!
//! ## Overview
//!
//! The central representation is the [`Value`][`crate::value::Value`] type,
//! which holds
//!
//! - the mantissa,
//! - the SI unit prefix (such as "kilo", "Mega", etc),
//! - and the base which represents the cases where "1 k" means 1000 (most
//! common) and the cases where "1 k" means 1024 (for kiB, MiB, etc).
//!
//! This crate provides 2 APIs: a low-level API, and a high-level API for
//! convenience.
//!
//! For the low-level API, the typical use case is
//!
//! - first parse a number into a [`Value`][`crate::value::Value`]. For doing
//! this, you have to specify the base, and maybe some constraint on the SI
//! scales. See [`Value::new()`][`crate::value::Value::new()`] and
//! [`Value::new_with()`][`crate::value::Value::new_with()`]
//!
//! - then display the `Value` either by yourself formatting the mantissa
//! and prefix (implements the `fmt::Display` trait), or using the provided
//! Formatter.
//!
//! For the high-level API, the typical use cases are
//!
//! 1. parse and display a number using the provided functions such as
//! `bibytes()`, `bytes()` or `seconds()`, they will choose for each number
//! the most appropriate SI scale.
//!
//! 2. In case you want the same control granularity as the low-level API
//! (e.g. constraining the scale in some way, using some base, specific
//! mantissa formatting), then you can build a custom function using the
//! provided macro `scale_fn!()`. The existing functions such as
//! `bibytes()`, `bytes()`, `seconds()` are all built using this same
//! macro.
//!
//!
//! ### The high-level API
//!
//! The `seconds3()` function parses a number into a `Value` and displays it
//! using 3 decimals and the appropriate scale for seconds (`UnitAndBelow`),
//! so that non-sensical scales such as kilo-seconds may not appear. The
//! `seconds()` function does the same but formats the mantissa with the
//! default `"{}"`, so no decimals are printed for integer mantissa.
//!
//! ```
//! use si_scale::helpers::{seconds, seconds3};
//!
//! let actual = format!("result is {:>15}", seconds(1234.5678));
//! let expected = "result is 1234.5678 s";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {:>10}", seconds3(12.3e-7));
//! let expected = "result is 1.230 µs";
//! assert_eq!(actual, expected);
//! ```
//!
//! The `bytes()` function parses a number into a `Value` *using base 1000*
//! and displays it using 1 decimal and the appropriate scale for bytes
//! (`UnitAndAbove`), so that non-sensical scales such as milli-bytes may not
//! appear.
//!
//! ```
//! use si_scale::helpers::{bytes, bytes1};
//!
//! let actual = format!("result is {}", bytes1(12_345_678));
//! let expected = "result is 12.3 MB";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {:>10}", bytes(16));
//! let expected = "result is 16 B";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {}", bytes(0.12));
//! let expected = "result is 0.12 B";
//! assert_eq!(actual, expected);
//! ```
//!
//! The `bibytes1()` function parses a number into a `Value` *using base 1024*
//! and displays it using 1 decimal and the appropriate scale for bytes
//! (`UnitAndAbove`), so that non-sensical scales such as milli-bytes may not
//! appear.
//!
//! ```
//! use si_scale::helpers::{bibytes, bibytes1};
//!
//! let actual = format!("result is {}", bibytes1(12_345_678));
//! let expected = "result is 11.8 MiB";
//! assert_eq!(actual, expected);
//! let actual = format!("result is {}", bibytes(16 * 1024));
//! let expected = "result is 16 kiB";
//! assert_eq!(actual, expected);
//! let actual = format!("result is {:>10}", bibytes1(16));
//! let expected = "result is 16.0 B";
//! assert_eq!(actual, expected);
//! let actual = format!("result is {}", bibytes(0.12));
//! let expected = "result is 0.12 B";
//! assert_eq!(actual, expected);
//! ```
//!
//!
//! ### The low-level API
//!
//! #### Creating a `Value` with `Value::new()`
//!
//! The low-level function [`Value::new()`][`crate::value::Value::new()`]
//! converts any number convertible to f64 into a `Value` using base 1000. The
//! `Value` struct implements `From` for common numbers and delegates to
//! `Value::new()`, so they are equivalent in practice. Here are a few
//! examples.
//!
//! ```rust
//! use std::convert::From;
//! use si_scale::prelude::*;
//!
//! let actual = Value::from(0.123);
//! let expected = Value {
//! mantissa: 123f64,
//! prefix: Prefix::Milli,
//! base: Base::B1000,
//! };
//! assert_eq!(actual, expected);
//! assert_eq!(Value::new(0.123), expected);
//!
//! let actual: Value = 0.123.into();
//! assert_eq!(actual, expected);
//!
//! let actual: Value = 1300i32.into();
//! let expected = Value {
//! mantissa: 1.3f64,
//! prefix: Prefix::Kilo,
//! base: Base::B1000,
//! };
//! assert_eq!(actual, expected);
//!
//! let actual: Vec<Value> = vec![0.123f64, -1.5e28]
//! .iter().map(|n| n.into()).collect();
//! let expected = vec![
//! Value {
//! mantissa: 123f64,
//! prefix: Prefix::Milli,
//! base: Base::B1000,
//! },
//! Value {
//! mantissa: -1.5e4f64,
//! prefix: Prefix::Yotta,
//! base: Base::B1000,
//! },
//! ];
//! assert_eq!(actual, expected);
//! ```
//!
//! As you can see in the last example, values which scale are outside of the
//! SI prefixes are represented using the closest SI prefix.
//!
//!
//! #### Creating a `Value` with `Value::new_with()`
//!
//! The low-level [`Value::new_with()`][`crate::value::Value::new_with()`]
//! operates similarly to [`Value::new()`][`crate::value::Value::new()`] but
//! also expects a base and a constraint on the scales you want to use. In
//! comparison with the simple `Value::new()`, this allows base 1024 scaling
//! (for kiB, MiB, etc) and preventing upper scales for seconds or lower
//! scales for integral units such as bytes (e.g. avoid writing 1300 sec as
//! 1.3 ks or 0.415 B as 415 mB).
//!
//! ```rust
//! use si_scale::prelude::*;
//!
//! // Assume this is seconds, no kilo-seconds make sense.
//! let actual = Value::new_with(1234, Base::B1000, Constraint::UnitAndBelow);
//! let expected = Value {
//! mantissa: 1234f64,
//! prefix: Prefix::Unit,
//! base: Base::B1000,
//! };
//! assert_eq!(actual, expected);
//! ```
//!
//! Don't worry yet about the verbosity, the following parser helps with this.
//!
//!
//! #### Formatting values
//!
//! In this example, the number `x` is converted into a value and displayed
//! using the most appropriate SI prefix. The user chose to constrain the
//! prefix to be anything lower than `Unit` (1) because kilo-seconds make
//! no sense.
//!
//! ```
//! use si_scale::format_value;
//! # fn main() {
//! use si_scale::{value::Value, base::Base, prefix::Constraint};
//!
//! let x = 1234.5678;
//! let v = Value::new_with(x, Base::B1000, Constraint::UnitAndBelow);
//! let unit = "s";
//!
//! let actual = format!(
//! "result is {}{u}",
//! format_value!(v, "{:.5}", groupings: '_'),
//! u = unit
//! );
//! let expected = "result is 1_234.567_80 s";
//! assert_eq!(actual, expected);
//! # }
//! ```
//!
//!
//! ## Run code-coverage
//!
//! Install the llvm-tools-preview component and grcov
//!
//! ```sh
//! rustup component add llvm-tools-preview
//! cargo install grcov
//! ```
//!
//! Install nightly
//!
//! ```sh
//! rustup toolchain install nightly
//! ```
//!
//! The following make invocation will switch to nigthly run the tests using
//! Cargo, and output coverage HTML report in `./coverage/`
//!
//! ```sh
//! make coverage
//! ```
//!
//! The coverage report is located in `./coverage/index.html`
//!
//!
//!
//! ## License
//!
//! Licensed under either of
//!
//! * [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
//! * [MIT license](http://opensource.org/licenses/MIT)
//!
//! at your option.
//!
//!
//! ### Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted
//! for inclusion in the work by you, as defined in the Apache-2.0 license, shall
//! be dual licensed as above, without any additional terms or conditions.
#[derive(Debug, PartialEq, Eq)]
pub enum SIUnitsError {
ExponentParsing(String),
}
pub type Result<T> = std::result::Result<T, SIUnitsError>;
pub mod base;
pub mod format;
pub mod helpers;
pub mod prefix;
pub mod value;
pub mod prelude {
pub use crate::base::Base;
pub use crate::prefix::{Constraint, Prefix};
pub use crate::value::Value;
}