1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
//! Ring buffer implementation, that does immutable reads.

use std::marker::PhantomData;
use std::num::Wrapping;
use std::ops::{Add, AddAssign, Sub, SubAssign};
use std::ptr;
use std::sync::mpsc::{self, Receiver, Sender};

use parking_lot::Mutex;

#[derive(Clone, Copy, Debug)]
struct CircularIndex {
    index: usize,
    size: usize,
}

impl CircularIndex {
    fn new(index: usize, size: usize) -> Self {
        CircularIndex { index, size }
    }

    fn at_end(size: usize) -> Self {
        CircularIndex {
            index: size - 1,
            size,
        }
    }

    /// A magic value (!0).
    /// This value gets set when calling `step` and we reached
    /// the end.
    fn magic(size: usize) -> Self {
        CircularIndex::new(!0, size)
    }

    fn is_magic(&self) -> bool {
        self.index == !0
    }

    fn step(&mut self, inclusive_end: usize) -> Option<usize> {
        match self.index {
            x if x == !0 => None,
            x if x == inclusive_end => {
                let r = Some(x);
                self.index = !0;

                r
            }
            x => {
                let r = Some(x);
                *self += 1;

                r
            }
        }
    }
}

impl Add<usize> for CircularIndex {
    type Output = usize;

    fn add(self, rhs: usize) -> usize {
        (self.index + rhs) % self.size
    }
}

impl AddAssign<usize> for CircularIndex {
    fn add_assign(&mut self, rhs: usize) {
        self.index = *self + rhs;
    }
}

impl Sub<usize> for CircularIndex {
    type Output = usize;

    fn sub(self, rhs: usize) -> usize {
        (self.size - rhs + self.index) % self.size
    }
}

impl SubAssign<usize> for CircularIndex {
    fn sub_assign(&mut self, rhs: usize) {
        self.index = *self - rhs;
    }
}

#[derive(Derivative)]
#[derivative(Debug)]
struct Data<T> {
    #[derivative(Debug = "ignore")]
    data: Vec<T>,
    uninitialized: usize,
}

impl<T> Data<T> {
    fn new(size: usize) -> Self {
        let mut data = Data {
            data: vec![],
            uninitialized: 0,
        };

        unsafe {
            data.grow(0, size);
        }

        data
    }

    unsafe fn get(&self, index: usize) -> &T {
        self.data.get_unchecked(index)
    }

    unsafe fn put(&mut self, cursor: usize, elem: T) {
        if self.uninitialized > 0 {
            // There is no element stored under `cursor`
            // -> do not drop anything!
            ptr::write(self.data.get_unchecked_mut(cursor) as *mut T, elem);
            self.uninitialized -= 1;
        } else {
            // We can safely drop this, it's initialized.
            *self.data.get_unchecked_mut(cursor) = elem;
        }
    }

    /// `cursor` is the first position that gets moved to the back,
    /// free memory will be created between `cursor - 1` and `cursor`.
    unsafe fn grow(&mut self, cursor: usize, by: usize) {
        assert!(by >= self.data.len());

        // Calculate how many elements we need to move
        let to_move = self.data.len() - cursor;

        // Reserve space and set the new length
        self.data.reserve_exact(by);
        let new = self.data.len() + by;
        self.data.set_len(new);

        // Move the elements after the cursor to the end of the buffer.
        // Since we grew the buffer at least by the old length,
        // the elements are non-overlapping.
        let src = self.data.as_ptr().offset(cursor as isize);
        let dst = self.data.as_mut_ptr().offset((cursor + by) as isize);
        ptr::copy_nonoverlapping(src, dst, to_move);

        self.uninitialized += by;
    }

    /// Called when dropping the ring buffer.
    unsafe fn clean(&mut self, cursor: usize) {
        let mut cursor = CircularIndex::new(cursor, self.data.len());
        let end = cursor - 1;

        while let Some(i) = cursor.step(end) {
            if self.uninitialized > 0 {
                self.uninitialized -= 1;
            } else {
                ptr::drop_in_place(self.data.get_unchecked_mut(i) as *mut T);
            }
        }

        self.data.set_len(0);
    }

    #[cfg(test)]
    fn num_initialized(&self) -> usize {
        self.data.len() - self.uninitialized
    }
}

#[derive(Copy, Clone, Debug)]
struct Reader {
    generation: usize,
    last_index: usize,
}

impl Reader {
    fn set_inactive(&mut self) {
        self.last_index = !0;
    }

    fn active(&self) -> bool {
        self.last_index != !0
    }

    fn distance_from(&self, last: CircularIndex, current_gen: usize) -> usize {
        let this = CircularIndex {
            index: self.last_index,
            size: last.size,
        };

        match this - last.index {
            0 if self.generation == current_gen => last.size,
            x => x,
        }
    }

    fn needs_shift(&self, last_index: usize, current_gen: usize) -> bool {
        self.last_index > last_index
            || (self.last_index == last_index && self.generation != current_gen)
    }
}

/// The reader id is used by readers to tell the storage where the last read ended.
#[derive(Debug)]
pub struct ReaderId<T: 'static> {
    id: usize,
    marker: PhantomData<&'static [T]>,
    // stupid way to make this `Sync`,
    // never actually locked
    drop_notifier: Mutex<Sender<usize>>,
}

impl<T: 'static> Drop for ReaderId<T> {
    fn drop(&mut self) {
        let _ = self.drop_notifier.get_mut().send(self.id);
    }
}

#[derive(Debug)]
struct ReaderMeta {
    /// Free ids
    free: Vec<usize>,
    readers: Vec<Reader>,
}

impl ReaderMeta {
    fn alloc(&mut self, last_index: usize, generation: usize) -> usize {
        match self.free.pop() {
            Some(id) => {
                self.readers[id].last_index = last_index;
                self.readers[id].generation = generation;

                id
            }
            None => {
                let id = self.readers.len();
                self.readers.push(Reader {
                    generation,
                    last_index,
                });

                id
            }
        }
    }

    fn remove(&mut self, id: usize) {
        self.readers[id].set_inactive();
        self.free.push(id);
    }

    fn nearest_index(&self, last: CircularIndex, current_gen: usize) -> Option<&Reader> {
        self.readers
            .iter()
            .filter(|reader| reader.active())
            .min_by_key(|reader| reader.distance_from(last, current_gen))
    }

    fn shift(&mut self, last_index: usize, current_gen: usize, grow_by: usize) {
        for reader in &mut self.readers {
            let reader = reader as &mut Reader;
            if !reader.active() {
                continue;
            }

            if reader.needs_shift(last_index, current_gen) {
                reader.last_index += grow_by;
            }
        }
    }
}

/// Ring buffer, holding data of type `T`.
#[derive(Debug)]
pub struct RingBuffer<T> {
    available: usize,
    last_index: CircularIndex,
    data: Data<T>,
    // stupid way to make this `Sync`,
    // never actually locked
    free_rx: Mutex<Receiver<usize>>,
    // stupid way to make this `Sync`,
    // never actually locked
    free_tx: Mutex<Sender<usize>>,
    generation: Wrapping<usize>,
    nearest_reader: usize,
    meta: Mutex<ReaderMeta>, // TODO: consider `UnsafeCell`
}

impl<T: 'static> RingBuffer<T> {
    /// Create a new ring buffer with the given max size.
    pub fn new(size: usize) -> Self {
        assert!(size > 1);

        let (free_tx, free_rx) = mpsc::channel();
        let free_tx = Mutex::new(free_tx);
        let free_rx = Mutex::new(free_rx);

        RingBuffer {
            available: size,
            last_index: CircularIndex::at_end(size),
            data: Data::new(size),
            free_rx,
            free_tx,
            generation: Wrapping(0),
            nearest_reader: !0,
            meta: Mutex::new(ReaderMeta {
                free: vec![],
                readers: vec![],
            }),
        }
    }

    /// Iterates over all elements of `iter` and pushes them to the buffer.
    pub fn iter_write<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = T>,
        I::IntoIter: ExactSizeIterator,
    {
        let iter = iter.into_iter();
        let len = iter.len();
        if len > 0 {
            self.ensure_additional(len);
            for element in iter {
                unsafe {
                    self.data.put(self.last_index + 1, element);
                }
                self.last_index += 1;
            }
            self.available -= len;
            self.generation += Wrapping(1);
        }
    }

    /// Removes all elements from a `Vec` and pushes them to the ring buffer.
    pub fn drain_vec_write(&mut self, data: &mut Vec<T>) {
        self.iter_write(data.drain(..));
    }

    /// Ensures that `num` elements can be inserted.
    /// Does nothing if there's enough space, grows the buffer otherwise.
    #[inline(always)]
    pub fn ensure_additional(&mut self, num: usize) {
        if self.available >= num {
            return;
        }

        self.ensure_additional_slow(num);
    }

    #[inline(never)]
    fn ensure_additional_slow(&mut self, num: usize) {
        self.maintain();
        let meta = self.meta.get_mut();
        let left: usize = match meta.nearest_index(self.last_index, self.generation.0) {
            None => {
                self.available = self.last_index.size;

                return;
            }
            Some(reader) => {
                let left = reader.distance_from(self.last_index, self.generation.0);

                self.available = left;

                if left >= num {
                    return;
                } else {
                    left
                }
            }
        };
        let grow_by = num - left;
        let min_target_size = self.last_index.size + grow_by;

        // Make sure size' = 2^n * size
        let mut size = 2 * self.last_index.size;
        while size < min_target_size {
            size *= 2;
        }

        // Calculate adjusted growth
        let grow_by = size - self.last_index.size;

        // Insert the additional elements
        unsafe {
            self.data.grow(self.last_index + 1, grow_by);
        }
        self.last_index.size = size;

        meta.shift(self.last_index.index, self.generation.0, grow_by);
        self.available = grow_by + left
    }

    fn maintain(&mut self) {
        let meta = self.meta.get_mut();
        while let Ok(id) = self.free_rx.get_mut().try_recv() {
            meta.remove(id);
        }
    }

    /// Write a single data point into the ring buffer.
    pub fn single_write(&mut self, element: T) {
        use std::iter::once;

        self.iter_write(once(element));
    }

    /// Create a new reader id for this ring buffer.
    pub fn new_reader_id(&mut self) -> ReaderId<T> {
        self.maintain();
        let last_index = self.last_index.index;
        let generation = self.generation.0;
        let id = self.meta.get_mut().alloc(last_index, generation);

        ReaderId {
            id,
            marker: PhantomData,
            drop_notifier: Mutex::new(self.free_tx.get_mut().clone()),
        }
    }

    /// Read data from the ring buffer, starting where the last read ended, and up to where the last
    /// element was written.
    pub fn read(&self, reader_id: &mut ReaderId<T>) -> StorageIterator<T> {
        let (last_read_index, gen) = {
            let mut meta = self.meta.lock();

            let reader = &mut meta.readers[reader_id.id];
            let old = reader.last_index;
            reader.last_index = self.last_index.index;
            let old_gen = reader.generation;
            reader.generation = self.generation.0;

            (old, old_gen)
        };
        let mut index = CircularIndex::new(last_read_index, self.last_index.size);
        index += 1;
        if gen == self.generation.0 {
            // It is empty
            index = CircularIndex::magic(index.size);
        }

        let iter = StorageIterator {
            data: &self.data,
            end: self.last_index.index,
            index,
        };

        iter
    }
}

impl<T> Drop for RingBuffer<T> {
    fn drop(&mut self) {
        unsafe {
            self.data.clean(self.last_index + 1);
        }
    }
}

/// Iterator over a slice of data in `RingBufferStorage`.
#[derive(Debug)]
pub struct StorageIterator<'a, T: 'a> {
    data: &'a Data<T>,
    /// Inclusive end
    end: usize,
    index: CircularIndex,
}

impl<'a, T> Iterator for StorageIterator<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        self.index
            .step(self.end)
            .map(|i| unsafe { self.data.get(i) })
    }

    // Needed to fulfill contract of `ExactSizeIterator`
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();

        (len, Some(len))
    }
}

impl<'a, T> ExactSizeIterator for StorageIterator<'a, T> {
    fn len(&self) -> usize {
        match self.index.is_magic() {
            true => 0,
            false => (CircularIndex::new(self.end, self.index.size) - self.index.index) + 1,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Debug, Clone, PartialEq)]
    struct Test {
        pub id: u32,
    }

    #[derive(Debug, Clone, PartialEq)]
    struct Test2 {
        pub id: u32,
    }

    #[test]
    fn test_size() {
        let mut buffer = RingBuffer::<i32>::new(4);

        buffer.single_write(55);

        let mut reader = buffer.new_reader_id();

        buffer.iter_write(0..16);
        assert_eq!(buffer.read(&mut reader).len(), 16);

        buffer.iter_write(0..6);
        assert_eq!(buffer.read(&mut reader).len(), 6);
    }

    #[test]
    fn test_circular() {
        let mut buffer = RingBuffer::<i32>::new(4);

        buffer.single_write(55);

        let mut reader = buffer.new_reader_id();

        buffer.iter_write(0..4);
        assert_eq!(
            buffer.read(&mut reader).cloned().collect::<Vec<_>>(),
            vec![0, 1, 2, 3]
        );
    }

    #[test]
    fn test_empty_write() {
        let mut buffer = RingBuffer::<Test>::new(10);
        buffer.drain_vec_write(&mut vec![]);
        assert_eq!(buffer.data.num_initialized(), 0);
    }

    #[test]
    fn test_too_large_write() {
        let mut buffer = RingBuffer::<Test>::new(10);
        // Events just go off into the void if there's no reader registered.
        let _reader = buffer.new_reader_id();
        buffer.drain_vec_write(&mut events(15));
        assert_eq!(buffer.data.num_initialized(), 15);
    }

    #[test]
    fn test_empty_read() {
        let mut buffer = RingBuffer::<Test>::new(10);
        let mut reader_id = buffer.new_reader_id();
        let data = buffer.read(&mut reader_id);
        assert_eq!(Vec::<Test>::default(), data.cloned().collect::<Vec<_>>())
    }

    #[test]
    fn test_empty_read_write_before_id() {
        let mut buffer = RingBuffer::<Test>::new(10);
        buffer.drain_vec_write(&mut events(2));
        let mut reader_id = buffer.new_reader_id();
        let data = buffer.read(&mut reader_id);
        assert_eq!(Vec::<Test>::default(), data.cloned().collect::<Vec<_>>())
    }

    #[test]
    fn test_read() {
        let mut buffer = RingBuffer::<Test>::new(10);
        let mut reader_id = buffer.new_reader_id();
        buffer.drain_vec_write(&mut events(2));
        assert_eq!(
            vec![Test { id: 0 }, Test { id: 1 }],
            buffer.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        assert_eq!(
            Vec::<Test>::new(),
            buffer.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
    }

    #[test]
    fn test_write_overflow() {
        let mut buffer = RingBuffer::<Test>::new(3);
        let mut reader_id = buffer.new_reader_id();
        buffer.drain_vec_write(&mut events(4));
        let data = buffer.read(&mut reader_id);
        assert_eq!(
            vec![
                Test { id: 0 },
                Test { id: 1 },
                Test { id: 2 },
                Test { id: 3 },
            ],
            data.cloned().collect::<Vec<_>>()
        );
    }

    /// If you're getting a compilation error here this test has failed!
    #[test]
    fn test_send_sync() {
        trait SendSync: Send + Sync {
            fn is_send_sync() -> bool;
        }

        impl<T> SendSync for T
        where
            T: Send + Sync,
        {
            fn is_send_sync() -> bool {
                true
            }
        }

        assert!(RingBuffer::<Test>::is_send_sync());
        assert!(ReaderId::<Test>::is_send_sync());
    }

    #[test]
    fn test_reader_reuse() {
        let mut buffer = RingBuffer::<Test>::new(3);
        {
            let _reader_id = buffer.new_reader_id();
        }
        let _reader_id = buffer.new_reader_id();
        assert_eq!(_reader_id.id, 0);
        assert_eq!(buffer.meta.get_mut().readers.len(), 1);
    }

    #[test]
    fn test_prevent_excess_growth() {
        let mut buffer = RingBuffer::<Test>::new(3);
        let mut reader_id = buffer.new_reader_id();
        println!("Initial buffer state: {:#?}", buffer);
        println!("--- first write ---");
        buffer.drain_vec_write(&mut events(2));
        println!("--- second write ---");
        buffer.drain_vec_write(&mut events(2));
        println!("--- writes complete ---");
        // we wrote 0,1,0,1, if the buffer grew correctly we'll get all of these back.
        assert_eq!(
            vec![
                Test { id: 0 },
                Test { id: 1 },
                Test { id: 0 },
                Test { id: 1 },
            ],
            buffer.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );

        buffer.drain_vec_write(&mut events(4));
        // After writing 4 more events the buffer should have no reason to grow beyond 6 (2 * 3).
        assert_eq!(buffer.data.num_initialized(), 6);
        assert_eq!(
            vec![
                Test { id: 0 },
                Test { id: 1 },
                Test { id: 2 },
                Test { id: 3 },
            ],
            buffer.read(&mut reader_id).cloned().collect::<Vec<_>>()
        );
    }

    #[test]
    fn test_write_slice() {
        let mut buffer = RingBuffer::<Test>::new(10);
        let mut reader_id = buffer.new_reader_id();
        buffer.iter_write(events(2));
        let data = buffer.read(&mut reader_id);
        assert_eq!(
            vec![Test { id: 0 }, Test { id: 1 }],
            data.cloned().collect::<Vec<_>>()
        );
    }

    #[test]
    fn iter_write_empty() {
        let mut buffer = RingBuffer::<Test>::new(10);
        let mut reader_id = buffer.new_reader_id();
        buffer.iter_write(Vec::new());
        let mut data = buffer.read(&mut reader_id);
        assert_eq!(None, data.next());
    }

    fn events(n: u32) -> Vec<Test> {
        (0..n).map(|i| Test { id: i }).collect::<Vec<_>>()
    }
}