1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use super::*;
use crate::utils::{max2, min2};
use std::{ops::Mul, vec::IntoIter};

mod constructors;

/// A non-rotated rectangle, used to represent AABB collision boxes.
///
/// # Notice
///
/// The constructor will not check the legality of the parameters, it is possible that two points coincide, or the side length is negative
///
/// # Examples
///
/// ```
/// # use shape_core::Rectangle;
/// let rect = Rectangle::new(0.0, 0.0, 1.0, 1.0);
/// ```
#[cfg_attr(feature = "serde", repr(C), derive(Serialize, Deserialize))]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Rectangle<T> {
    /// origin x points of the rectangle
    pub min: Point<T>,
    /// origin y points of the rectangle
    pub max: Point<T>,
}

impl<T> Shape2D for Rectangle<T>
where
    T: Signed + Clone + PartialOrd,
{
    type Value = T;
    type VertexIterator<'a>

    = IntoIter<Point<T>>where
        T: 'a;
    type LineIterator<'a>

    = IntoIter<Line<T>>where
        T: 'a;

    /// A valid rectangle means it has a positive area.
    ///
    /// # Examples
    ///
    /// ```
    /// # use shape_core::{Rectangle, Shape2D};
    /// let rect = Rectangle::new(0.0, 0.0, 1.0, 1.0);
    /// assert!(rect.is_valid());
    /// ```
    fn is_valid(&self) -> bool {
        // can not be zero area
        self.max.x > self.min.x && self.max.y > self.min.y
    }

    fn normalize(&mut self) -> bool {
        *self = self.boundary();
        // maybe zero area after flip
        self.is_valid()
    }
    /// # SAFETY
    ///
    /// It may return a zero area rectangle if shape is not valid.
    ///
    /// It never returns a rectangle with negative area.
    ///
    /// # Examples
    ///
    /// ```ignore
    /// # use shape_core::{Rectangle, Shape2D};
    /// let rect = Rectangle::new(0.0, 0.0, -1.0, -1.0);
    /// assert_eq!(rect.boundary(), Rectangle::new(0.0,0.0, 1.0,1.0));
    /// ```
    fn boundary(&self) -> Rectangle<Self::Value> {
        let min_x = min2(&self.min.x, &self.max.x).clone();
        let min_y = min2(&self.min.y, &self.max.y).clone();
        let max_x = max2(&self.max.x, &self.min.x).clone();
        let max_y = max2(&self.max.y, &self.min.y).clone();
        Rectangle { min: Point { x: min_x, y: min_y }, max: Point { x: max_x, y: max_y } }
    }

    /// Returns four vertices counterclockwise in the **↑Y coordinate system**
    fn vertices<'a>(&'a self, _: usize) -> Self::VertexIterator<'a> {
        // yield self.min.clone();
        // yield Point { x: self.max.x.clone(), y: self.min.y.clone() };
        // yield self.max.clone();
        // yield Point { x: self.min.x.clone(), y: self.max.y.clone() };
        vec![
            self.min.clone(),
            Point { x: self.max.x.clone(), y: self.min.y.clone() },
            self.max.clone(),
            Point { x: self.min.x.clone(), y: self.max.y.clone() },
        ]
        .into_iter()
    }

    /// Returns four edges counterclockwise in the **↑Y coordinate system**
    fn edges<'a>(&'a self, _: usize) -> Self::LineIterator<'a> {
        let mut start = self.min.clone();
        let mut end = Point { x: self.max.x.clone(), y: self.min.y.clone() };
        let mut out = Vec::with_capacity(4);
        {
            out.push(Line::new(start.clone(), end.clone()));
            start = end.clone();
            end = self.max.clone();
            out.push(Line::new(start.clone(), end.clone()));
            start = end.clone();
            end = Point { x: self.min.x.clone(), y: self.max.y.clone() };
            out.push(Line::new(start.clone(), end.clone()));
            start = end.clone();
            end = self.min.clone();
            out.push(Line::new(start.clone(), end.clone()));
        };
        out.into_iter()
    }
}

impl<T> Rectangle<T> {
    /// Get the width of the rectangle
    ///
    /// # Examples
    ///
    /// ```
    /// # use shape_core::Rectangle;
    /// let rect = Rectangle::new(0.0, 0.0, 1.0, 1.0);
    /// assert_eq!(rect.width(), 1.0);
    /// ```
    pub fn width(&self) -> T
    where
        T: Clone + Sub<Output = T>,
    {
        self.max.x.clone() - self.min.x.clone()
    }

    /// Get the height of the rectangle
    ///
    /// # Examples
    ///
    /// ```
    /// # use shape_core::Rectangle;
    /// let rect = Rectangle::new(0.0, 0.0, 1.0, 1.0);
    /// assert_eq!(rect.height(), 1.0);
    /// ```
    pub fn height(&self) -> T
    where
        T: Clone + Sub<Output = T>,
    {
        self.max.y.clone() - self.min.y.clone()
    }
    /// Get the origin of the rectangle
    ///
    /// # Examples
    ///
    /// ```
    /// # use shape_core::{Point, Rectangle};
    /// let rect = Rectangle::from_center((0.0, 0.0), 1.0,1.0);
    /// assert_eq!(rect.origin(), -Point::new(0.5, 0.5));
    /// ```
    pub fn origin(&self) -> Point<T>
    where
        T: Clone,
    {
        self.min.clone()
    }
    /// Get the center point of the rectangle
    ///
    /// # Examples
    ///
    /// ```
    /// # use shape_core::{Point, Rectangle};
    /// let rect = Rectangle::new(0.0, 0.0, 1.0, 1.0);
    /// assert_eq!(rect.center(), Point::new(0.5, 0.5));
    /// ```
    pub fn center(&self) -> Point<T>
    where
        T: Clone + One + Add<Output = T> + Sub<Output = T> + Div<Output = T>,
    {
        Point { x: (self.min.x.clone() + self.max.x.clone()) / two(), y: (self.min.y.clone() + self.max.y.clone()) / two() }
    }
    /// Move reference to the inner value
    pub fn ref_inner(&self) -> Rectangle<&T> {
        Rectangle { min: self.min.ref_inner(), max: self.max.ref_inner() }
    }
    pub fn contains(&self, point: &Point<T>) -> bool
    where
        T: Clone + PartialOrd,
    {
        point.x >= self.min.x.clone()
            && point.x <= self.max.x.clone()
            && point.y >= self.min.y.clone()
            && point.y <= self.max.y.clone()
    }
    /// Check if two rectangle had overlapped
    pub fn overlaps(&self, other: &Rectangle<T>) -> bool
    where
        T: Clone + PartialOrd,
    {
        self.min.x.clone() <= other.max.x.clone()
            && self.max.x.clone() >= other.min.x.clone()
            && self.min.y.clone() <= other.max.y.clone()
            && self.max.y.clone() >= other.min.y.clone()
    }
    /// Get the area of the rectangle
    ///
    /// # Examples
    ///
    /// ```
    /// # use shape_core::{Point, Rectangle};
    /// let rect = Rectangle::new(0.0, 0.0, 2.0, 2.0);
    /// assert_eq!(rect.area(), 4.0);
    /// ```
    pub fn area(&self) -> T
    where
        T: Clone + Mul<Output = T> + Sub<Output = T>,
    {
        (self.max.x.clone() - self.min.x.clone()) * (self.max.y.clone() - self.min.y.clone())
    }
}