1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
mod convert;
mod display;
mod indexes;
use super::*;
/// A triangles is a polygon with three edges and three vertices. It is one of the basic shapes in geometry.
///
/// # Arguments
///
/// * `a`:
/// * `b`:
/// * `c`:
///
/// returns: Triangle<T>
///
/// # Examples
///
/// ```
/// # use shape_core::Triangle;
/// ```
#[derive(Debug, Clone)]
pub struct Triangle<T> {
/// The 1st vertex of the triangle.
pub a: Point<T>,
/// The 2nd vertex of the triangle.
pub b: Point<T>,
/// The 3rd vertex of the triangle.
pub c: Point<T>,
}
/// Clockwise means the front side, and counterclockwise means the back side. When rendering, only the front side is rendered by default, and the back side is invisible.
///
/// If you need double-sided display, you need to draw the reverse side at the same time, you can call !self to get the reverse side
#[derive(Copy, Clone)]
pub struct TriangleIndex {
/// The 1st vertex in the triangle index.
pub a: usize,
/// The 2nd vertex in the triangle index.
pub b: usize,
/// The 3rd vertex in the triangle index.
pub c: usize,
}
impl<T> Triangle<T> {
/// Create a new triangle from three points.
pub fn new<P>(a: P, b: P, c: P) -> Self
where
P: Into<Point<T>>,
{
Self { a: a.into(), b: b.into(), c: c.into() }
}
/// Create a triangle from a mesh and a triangles index.
pub fn from_mesh(vertexes: &[Point<T>], index: TriangleIndex) -> Self
where
T: Clone,
{
debug_assert!(index.max() < vertexes.len(), "triangles index {index} out of range, must less than {}", vertexes.len());
// SAFETY: the debug_assert! above ensures that the index is in range
unsafe {
Self {
a: vertexes.get_unchecked(index.a).clone(),
b: vertexes.get_unchecked(index.b).clone(),
c: vertexes.get_unchecked(index.c).clone(),
}
}
}
}
impl<T> Triangle<T>
where
T: Clone + AddAssign + Real,
{
/// Returns true if the triangle is equilateral.
pub fn is_congruent(&self) -> bool {
true
}
/// Returns true if the triangle is equilateral.
pub fn is_isosceles(&self) -> bool {
true
}
/// Returns the perimeter of the triangle.
pub fn perimeter(&self) -> T {
let mut out = T::zero();
for edge in self.edges(3) {
out += edge.length();
}
out
}
/// Returns the area of the triangles.
pub fn area(&self) -> T {
// Det[{{x0, y0, 1}, {x1, y1, 1}, {x2, y2, 1}}] / 2
// x0 y1 - x1 y0
let det1 = self.a.x.clone() * self.b.y.clone() - self.b.x.clone() * self.a.y.clone();
// x1 y2 - x2 y1
let det2 = self.b.x.clone() * self.c.y.clone() - self.c.x.clone() * self.b.y.clone();
// x2 y0 - x0 y2
let det3 = self.c.x.clone() * self.a.y.clone() - self.a.x.clone() * self.c.y.clone();
(det1 + det2 + det3) / two()
}
/// Get the inscribed circle of the triangles
pub fn inscribed_circle(&self) -> Circle<T> {
todo!()
}
/// Get the circumscribed circle of the triangles.
pub fn circumscribed_circle(&self) -> Circle<T> {
Circle::from_3_points(&self.a, &self.b, &self.c)
}
}