1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
use super::*;
mod arthmetic;
mod constructors;
mod euclidean;
mod manhattan;

/// A 2D points.
#[cfg_attr(feature = "serde", repr(C), derive(Serialize, Deserialize))]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Point<T> {
    /// The x-coordinate of the point
    pub x: T,
    /// The y-coordinate of the point
    pub y: T,
}

impl<T> Point<T> {
    pub fn ref_inner(&self) -> Point<&T> {
        Point { x: &self.x, y: &self.y }
    }
}

impl<T> Point<T>
where
    T: Num + Clone,
{
    pub fn norm(&self) -> T
    where
        T: Float,
    {
        (self.x.clone() * self.x.clone() + self.y.clone() * self.y.clone()).sqrt()
    }

    /// ```math
    /// \vec{PA}\times\vec{PB} = (a_x-b_x)*(p_y-b_y)-(p_x-b_x)*(a_y-b_y)
    /// ```
    pub fn cross_dot(&self, a: &Self, b: &Self) -> T {
        let p = (b.x.clone() - a.x.clone()) * (self.y.clone() - b.y.clone());
        let q = (b.y.clone() - a.y.clone()) * (self.x.clone() - b.x.clone());
        p - q
    }
}