1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
use num_traits::{AsPrimitive, CheckedDiv};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::{
convert::TryInto,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
/// Utility type for manipulating 2-dimensional vectors.
///
/// `Vector2` is a simple type that defines
/// a mathematical vector with two coordinates (x and y).
///
/// It can be used to represent anything that has two dimensions: a size, a point, a velocity, etc.
///
/// The type parameter T is the type of the coordinates.
///
/// You generally don't have to care about the generic form (`Vector2<T>`), the most common
/// specializations have special type aliases:
///
/// - `Vector2<f32>` is [`Vector2f`]
/// - `Vector2<i32>` is [`Vector2i`]
/// - `Vector2<u32>` is [`Vector2u`]
///
/// The `Vector2` type has a small and simple interface, its x and y members can be
/// accessed directly (there are no accessors like `set_x()`, `get_x()`) and it contains no
/// mathematical function like dot product, cross product, length, etc.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2f;
/// let mut v1 = Vector2f::new(16.5, 24.0);
/// v1.x = 18.2;
/// let y = v1.y;
///
/// let v2 = v1 * 5.0;
/// let v3 = v1 + v2;
/// assert_ne!(v2, v3);
/// ```
///
/// Note: for 3-dimensional vectors, see [`Vector3`].
///
/// [`Vector3`]: crate::system::Vector3
#[repr(C)]
#[derive(Clone, PartialEq, Eq, Debug, Copy, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Vector2<T> {
/// X coordinate of the vector.
pub x: T,
/// Y coordinate of the vector.
pub y: T,
}
/// [`Vector2`] with `i32` coordinates.
pub type Vector2i = Vector2<i32>;
/// [`Vector2`] with `u32` coordinates.
pub type Vector2u = Vector2<u32>;
/// [`Vector2`] with `f32` coordinates.
pub type Vector2f = Vector2<f32>;
impl<T> Vector2<T> {
/// Creates a new vector from its coordinates.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2;
/// let v: Vector2<isize> = Vector2::new(6969, 6969);
/// ```
pub const fn new(x: T, y: T) -> Self {
Self { x, y }
}
/// Lossless conversion into `Vector2<U>`.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2;
/// let vu: Vector2<u16> = Vector2::new(6969, 6969);
/// let vi: Vector2<i32> = vu.into_other();
/// assert_eq!(vu.x, vi.x.try_into().unwrap());
/// assert_eq!(vu.y, vu.y.try_into().unwrap());
/// ```
pub fn into_other<U>(self) -> Vector2<U>
where
T: Into<U>,
{
Vector2 {
x: self.x.into(),
y: self.y.into(),
}
}
/// Fallible conversion into `Vector2<U>`
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2;
/// // Passing case
/// let vi: Vector2<i32> = Vector2::new(21, 21);
/// let vu: Vector2<u32> = vi.try_into_other().unwrap(); // or any other Result resolution
/// assert_eq!(u32::try_from(vi.x).unwrap(), vu.x);
/// assert_eq!(u32::try_from(vi.y).unwrap(), vu.y);
///
/// // Failing case
/// let vi: Vector2<i32> = Vector2::new(-21, -21);
/// let vu = vi.try_into_other::<u32>();
/// assert!(vu.is_err());
/// ```
pub fn try_into_other<U>(self) -> Result<Vector2<U>, T::Error>
where
T: TryInto<U>,
{
Ok(Vector2 {
x: self.x.try_into()?,
y: self.y.try_into()?,
})
}
/// Lossy conversion into `Vector2<U>`
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2;
/// let vf: Vector2<f32> = Vector2::new(696969.6969, 6969.6969);
/// let vi: Vector2<i32> = vf.as_other();
/// assert_eq!(vf.x as i32, vi.x);
/// assert_eq!(vf.y as i32, vi.y);
/// ```
pub fn as_other<U: 'static + Copy>(self) -> Vector2<U>
where
T: AsPrimitive<U>,
{
Vector2 {
x: self.x.as_(),
y: self.y.as_(),
}
}
}
impl<T: Mul<Output = T> + Add<Output = T> + Copy> Vector2<T> {
/// Dot product of two 2D vectors.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(16, 64);
/// let b = Vector2i::new(2, 4);
/// assert_eq!(a.dot(b), 288);
/// ```
pub fn dot(self, rhs: Self) -> T {
self.x * rhs.x + self.y * rhs.y
}
/// Square of vector's length.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(10, 9);
/// assert_eq!(a.length_sq(), 181);
/// ```
pub fn length_sq(self) -> T {
self.dot(self)
}
}
impl<T: Mul<Output = T> + Sub<Output = T> + Copy> Vector2<T> {
/// Z component of the cross product of two 2D vectors.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(69, 420);
/// let b = Vector2i::new(21, 101);
/// assert_eq!(a.cross(b), -1851);
/// ```
pub fn cross(self, rhs: Self) -> T {
self.x * rhs.y - self.y * rhs.x
}
}
impl<T: Mul<Output = T>> Vector2<T> {
/// Component-wise multiplication of self and rhs.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(1, 1);
/// let b = Vector2i::new(2, 2);
/// assert_eq!(a.cwise_mul(b), Vector2i::new(2, 2));
/// ```
pub fn cwise_mul(self, rhs: Self) -> Vector2<T> {
Self {
x: self.x * rhs.x,
y: self.y * rhs.y,
}
}
}
impl<T: Div<Output = T>> Vector2<T> {
/// Component-wise division of self and rhs. Panics on divide by zero
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(69, 69);
/// let b = Vector2i::new(3, 3);
/// assert_eq!(a.cwise_div(b), Vector2i::new(23, 23));
/// ```
pub fn cwise_div(self, rhs: Self) -> Vector2<T> {
Vector2 {
x: self.x / rhs.x,
y: self.y / rhs.y,
}
}
}
impl<T: Div<Output = T> + CheckedDiv> Vector2<T> {
/// Component-wise checked division of self and rhs. Returns None on divide by zero
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// // Passing case
/// let a = Vector2i::new(69, 69);
/// let b = Vector2i::new(3, 3);
/// assert_eq!(a.cwise_checked_div(b), Some(Vector2i::new(23, 23)));
///
/// // Failing case
/// let b = Vector2i::new(0, 3);
/// assert_eq!(a.cwise_checked_div(b), None);
/// ```
pub fn cwise_checked_div(self, rhs: Self) -> Option<Vector2<T>> {
let x = self.x.checked_div(&rhs.x)?;
let y = self.y.checked_div(&rhs.y)?;
Some(Vector2 { x, y })
}
}
impl<T: Neg<Output = T>> Vector2<T> {
/// Returns a perpendicular vector rotated +90 degrees
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(21, -21);
/// assert_eq!(a.perpendicular(), Vector2i::new(21, 21));
/// ```
pub fn perpendicular(self) -> Vector2<T> {
Vector2::new(-self.y, self.x)
}
}
impl<T> From<(T, T)> for Vector2<T> {
/// Constructs a `Vector2` from `(x, y)`.
///
/// # Usage example
///
/// ```
/// # use sfml::system::Vector2;
/// let a: Vector2<u16> = Vector2::from((69u16, 420u16));
/// assert_eq!(a.x, 69u16);
/// assert_eq!(a.y, 420u16);
/// ```
fn from(src: (T, T)) -> Self {
Self { x: src.0, y: src.1 }
}
}
impl<T: Add> Add<Vector2<T>> for Vector2<T> {
type Output = Vector2<T::Output>;
/// Performs component wise addition
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(9, 10);
/// let b = Vector2i::new(10, 9);
/// assert_ne!(a + b, Vector2i::new(21, 21));
/// ```
fn add(self, rhs: Vector2<T>) -> Vector2<T::Output> {
Vector2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl<T: AddAssign> AddAssign for Vector2<T> {
/// Performs component wise addition assignment
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let mut a = Vector2i::new(9, 10);
/// let b = Vector2i::new(10, 9);
/// a += b;
/// assert_eq!(a, Vector2i::new(19, 19));
/// ```
fn add_assign(&mut self, rhs: Self) {
self.x += rhs.x;
self.y += rhs.y;
}
}
impl<T: Sub> Sub<Vector2<T>> for Vector2<T> {
type Output = Vector2<T::Output>;
/// Performs component wise subtraction
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(9, 10);
/// let b = Vector2i::new(10, 9);
/// assert_eq!(a - b, Vector2i::new(-1, 1));
/// ```
fn sub(self, rhs: Vector2<T>) -> Vector2<T::Output> {
Vector2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl<T: SubAssign> SubAssign for Vector2<T> {
/// Performs component wise subtraction assignment
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let mut a = Vector2i::new(9, 10);
/// let b = Vector2i::new(10, 9);
/// a -= b;
/// assert_eq!(a, Vector2i::new(-1, 1));
/// ```
fn sub_assign(&mut self, rhs: Self) {
self.x -= rhs.x;
self.y -= rhs.y;
}
}
impl<T: Mul + Copy> Mul<T> for Vector2<T> {
type Output = Vector2<T::Output>;
/// Performs scalar multiplication
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(9, 10);
/// assert_eq!(a * 420, Vector2i::new(3780, 4200));
/// ```
fn mul(self, rhs: T) -> Vector2<T::Output> {
Vector2 {
x: self.x * rhs,
y: self.y * rhs,
}
}
}
impl<T: MulAssign + Copy> MulAssign<T> for Vector2<T> {
/// Performs scalar multiplication assignment
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let mut a = Vector2i::new(9, 10);
/// a *= 420;
/// assert_eq!(a, Vector2i::new(3780, 4200));
/// ```
fn mul_assign(&mut self, rhs: T) {
self.x *= rhs;
self.y *= rhs;
}
}
impl<T: Div + Copy> Div<T> for Vector2<T> {
type Output = Vector2<T::Output>;
/// Performs scalar division
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let a = Vector2i::new(9, 10);
/// assert_eq!(a / 3, Vector2i::new(3, 3));
/// ```
fn div(self, rhs: T) -> Vector2<T::Output> {
Vector2 {
x: self.x / rhs,
y: self.y / rhs,
}
}
}
impl<T: DivAssign + Copy> DivAssign<T> for Vector2<T> {
/// Performs scalar division assignment
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// let mut a = Vector2i::new(9, 10);
/// a /= 3;
/// assert_eq!(a, Vector2i::new(3, 3));
/// ```
fn div_assign(&mut self, rhs: T) {
self.x /= rhs;
self.y /= rhs;
}
}
impl<T: CheckedDiv> Vector2<T> {
/// `checked_div` for scalar division
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// // Passing case
/// let a = Vector2i::new(420, 69);
/// assert_eq!(a.checked_div(1000), Some(Vector2i::new(0, 0)));
///
/// // Failing case
/// assert_eq!(a.checked_div(0), None);
/// ```
pub fn checked_div(self, rhs: T) -> Option<Vector2<T>> {
let x = self.x.checked_div(&rhs)?;
let y = self.y.checked_div(&rhs)?;
Some(Vector2 { x, y })
}
}
impl<T: Neg<Output = T>> Neg for Vector2<T> {
type Output = Self;
/// Negates the vector
///
/// # Usage Example
///
/// ```
/// # use sfml::system::Vector2i;
/// use std::ops::Neg;
/// let a = Vector2i::new(21, 21);
/// assert_eq!(a.neg(), Vector2i::new(-21, -21));
fn neg(self) -> Self {
Vector2 {
x: -self.x,
y: -self.y,
}
}
}
#[cfg(feature = "window")]
impl Vector2i {
pub(crate) fn raw(self) -> crate::ffi::sfVector2i {
crate::ffi::sfVector2i {
x: self.x,
y: self.y,
}
}
pub(crate) fn from_raw(raw: crate::ffi::sfVector2i) -> Self {
Self { x: raw.x, y: raw.y }
}
}
#[cfg(feature = "window")]
impl Vector2u {
pub(crate) fn raw(self) -> crate::ffi::sfVector2u {
crate::ffi::sfVector2u {
x: self.x,
y: self.y,
}
}
pub(crate) fn from_raw(raw: crate::ffi::sfVector2u) -> Self {
Self { x: raw.x, y: raw.y }
}
}
#[cfg(feature = "graphics")]
impl Vector2f {
pub(crate) fn raw(self) -> crate::ffi::sfVector2f {
crate::ffi::sfVector2f {
x: self.x,
y: self.y,
}
}
pub(crate) fn from_raw(raw: crate::ffi::sfVector2f) -> Self {
Self { x: raw.x, y: raw.y }
}
}