1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
use crate::{ffi::graphics as ffi, graphics::FloatRect, system::Vector2f};
/// Define a 3x3 transform matrix.
///
/// A `Transform` specifies how to translate,
/// rotate, scale, shear, project, whatever things.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Transform {
pub(crate) matrix: [f32; 16],
}
impl Transform {
/// Creates a new transform from a 3x3 matrix.
///
/// # Arguments
///
/// - *a00* : Element (0, 0) of the matrix
/// - *a01* : Element (0, 1) of the matrix
/// - *a02* : Element (0, 2) of the matrix
/// - *a10* : Element (1, 0) of the matrix
/// - *a11* : Element (1, 1) of the matrix
/// - *a12* : Element (1, 2) of the matrix
/// - *a20* : Element (2, 0) of the matrix
/// - *a21* : Element (2, 1) of the matrix
/// - *a22* : Element (2, 2) of the matrix
#[allow(clippy::too_many_arguments)]
#[must_use]
pub fn new(
a00: f32,
a01: f32,
a02: f32,
a10: f32,
a11: f32,
a12: f32,
a20: f32,
a21: f32,
a22: f32,
) -> Transform {
Self {
matrix: [
a00, a10, 0., a20, a01, a11, 0., a21, 0., 0., 1., 0., a02, a12, 0., a22,
],
}
}
/// Return the matrix
#[must_use]
pub fn get_matrix(&self) -> &[f32; 16] {
&self.matrix
}
/// The identity transform (does nothing)
pub const IDENTITY: Self = Self {
matrix: [
1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
],
};
/// Return the inverse of a transform
///
/// If the inverse cannot be computed, a new identity transform
/// is returned.
///
/// Return the inverse matrix
#[must_use]
pub fn inverse(&self) -> Transform {
// Directly translated from SFML source code.
let det = self.matrix[0]
* (self.matrix[15] * self.matrix[5] - self.matrix[7] * self.matrix[13])
- self.matrix[1]
* (self.matrix[15] * self.matrix[4] - self.matrix[7] * self.matrix[12])
+ self.matrix[3]
* (self.matrix[13] * self.matrix[4] - self.matrix[5] * self.matrix[12]);
// Compute the inverse if the determinant is not zero
// (don't use an epsilon because the determinant may *really* be tiny)
if det != 0. {
Self::new(
(self.matrix[15] * self.matrix[5] - self.matrix[7] * self.matrix[13]) / det,
-(self.matrix[15] * self.matrix[4] - self.matrix[7] * self.matrix[12]) / det,
(self.matrix[13] * self.matrix[4] - self.matrix[5] * self.matrix[12]) / det,
-(self.matrix[15] * self.matrix[1] - self.matrix[3] * self.matrix[13]) / det,
(self.matrix[15] * self.matrix[0] - self.matrix[3] * self.matrix[12]) / det,
-(self.matrix[13] * self.matrix[0] - self.matrix[1] * self.matrix[12]) / det,
(self.matrix[7] * self.matrix[1] - self.matrix[3] * self.matrix[5]) / det,
-(self.matrix[7] * self.matrix[0] - self.matrix[3] * self.matrix[4]) / det,
(self.matrix[5] * self.matrix[0] - self.matrix[1] * self.matrix[4]) / det,
)
} else {
Self::IDENTITY
}
}
/// Combine two transforms
///
/// The result is a transform that is equivalent to applying
/// transform followed by other. Mathematically, it is
/// equivalent to a matrix multiplication.
///
/// # Arguments
/// * other - Transform to combine to transform
pub fn combine(&mut self, other: &Transform) {
unsafe { ffi::sfTransform_combine(self, other) }
}
/// Combine a transform with a translation
///
/// # Arguments
/// * x - Offset to apply on X axis
/// * y - Offset to apply on Y axis
pub fn translate(&mut self, x: f32, y: f32) {
unsafe { ffi::sfTransform_translate(self, x, y) }
}
/// Combine the current transform with a rotation
///
/// # Arguments
/// * angle - Rotation angle, in degrees
pub fn rotate(&mut self, angle: f32) {
unsafe { ffi::sfTransform_rotate(self, angle) }
}
/// Combine the current transform with a rotation
///
/// The center of rotation is provided for convenience as a second
/// argument, so that you can build rotations around arbitrary points
/// more easily (and efficiently) than the usual
/// [translate(-center), rotate(angle), translate(center)].
///
/// # Arguments
/// * angle - Rotation angle, in degrees
/// * `center_x` - X coordinate of the center of rotation
/// * `center_y` - Y coordinate of the center of rotation
pub fn rotate_with_center(&mut self, angle: f32, center_x: f32, center_y: f32) {
unsafe { ffi::sfTransform_rotateWithCenter(self, angle, center_x, center_y) }
}
/// Combine the current transform with a scaling
///
/// # Arguments
/// * `scale_x` - Scaling factor on the X axis
/// * `scale_y` - Scaling factor on the Y axis
pub fn scale(&mut self, scale_x: f32, scale_y: f32) {
unsafe { ffi::sfTransform_scale(self, scale_x, scale_y) }
}
/// Combine the current transform with a scaling
///
/// The center of scaling is provided for convenience as a second
/// argument, so that you can build scaling around arbitrary points
/// more easily (and efficiently) than the usual
/// [translate(-center), scale(factors), translate(center)]
///
/// # Arguments
/// * `scale_x` - Scaling factor on X axis
/// * `scale_y` - Scaling factor on Y axis
/// * `center_x` - X coordinate of the center of scaling
/// * `center_y` - Y coordinate of the center of scaling
pub fn scale_with_center(&mut self, scale_x: f32, scale_y: f32, center_x: f32, center_y: f32) {
unsafe { ffi::sfTransform_scaleWithCenter(self, scale_x, scale_y, center_x, center_y) }
}
/// Apply a transform to a 2D point
///
/// # Arguments
/// * point - Point to transform
///
/// Return a transformed point
#[must_use]
pub fn transform_point(&self, point: Vector2f) -> Vector2f {
unsafe { Vector2f::from_raw(ffi::sfTransform_transformPoint(self, point.raw())) }
}
/// Apply a transform to a rectangle
///
/// Since SFML doesn't provide support for oriented rectangles,
/// the result of this function is always an axis-aligned
/// rectangle. Which means that if the transform contains a
/// rotation, the bounding rectangle of the transformed rectangle
/// is returned.
///
/// # Arguments
/// rectangle - Rectangle to transform
///
/// Return the transformed rectangle
#[must_use]
pub fn transform_rect(&self, rectangle: &FloatRect) -> FloatRect {
unsafe { FloatRect::from_raw(ffi::sfTransform_transformRect(self, rectangle.raw())) }
}
}
impl Default for Transform {
fn default() -> Self {
Self::IDENTITY
}
}