1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use crate::{ffi::graphics as ffi, graphics::FloatRect, system::Vector2f};

/// Define a 3x3 transform matrix.
///
/// A `Transform` specifies how to translate,
/// rotate, scale, shear, project, whatever things.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Transform {
    pub(crate) matrix: [f32; 16],
}

impl Transform {
    /// Creates a new transform from a 3x3 matrix.
    ///
    /// # Arguments
    ///
    /// - *a00* : Element (0, 0) of the matrix
    /// - *a01* : Element (0, 1) of the matrix
    /// - *a02* : Element (0, 2) of the matrix
    /// - *a10* : Element (1, 0) of the matrix
    /// - *a11* : Element (1, 1) of the matrix
    /// - *a12* : Element (1, 2) of the matrix
    /// - *a20* : Element (2, 0) of the matrix
    /// - *a21* : Element (2, 1) of the matrix
    /// - *a22* : Element (2, 2) of the matrix
    #[allow(clippy::too_many_arguments)]
    #[must_use]
    pub fn new(
        a00: f32,
        a01: f32,
        a02: f32,
        a10: f32,
        a11: f32,
        a12: f32,
        a20: f32,
        a21: f32,
        a22: f32,
    ) -> Transform {
        Self {
            matrix: [
                a00, a10, 0., a20, a01, a11, 0., a21, 0., 0., 1., 0., a02, a12, 0., a22,
            ],
        }
    }

    /// Return the matrix
    #[must_use]
    pub fn get_matrix(&self) -> &[f32; 16] {
        &self.matrix
    }

    /// The identity transform (does nothing)
    pub const IDENTITY: Self = Self {
        matrix: [
            1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
        ],
    };

    /// Return the inverse of a transform
    ///
    /// If the inverse cannot be computed, a new identity transform
    /// is returned.
    ///
    /// Return the inverse matrix
    #[must_use]
    pub fn inverse(&self) -> Transform {
        // Directly translated from SFML source code.
        let det = self.matrix[0]
            * (self.matrix[15] * self.matrix[5] - self.matrix[7] * self.matrix[13])
            - self.matrix[1]
                * (self.matrix[15] * self.matrix[4] - self.matrix[7] * self.matrix[12])
            + self.matrix[3]
                * (self.matrix[13] * self.matrix[4] - self.matrix[5] * self.matrix[12]);

        // Compute the inverse if the determinant is not zero
        // (don't use an epsilon because the determinant may *really* be tiny)
        if det != 0. {
            Self::new(
                (self.matrix[15] * self.matrix[5] - self.matrix[7] * self.matrix[13]) / det,
                -(self.matrix[15] * self.matrix[4] - self.matrix[7] * self.matrix[12]) / det,
                (self.matrix[13] * self.matrix[4] - self.matrix[5] * self.matrix[12]) / det,
                -(self.matrix[15] * self.matrix[1] - self.matrix[3] * self.matrix[13]) / det,
                (self.matrix[15] * self.matrix[0] - self.matrix[3] * self.matrix[12]) / det,
                -(self.matrix[13] * self.matrix[0] - self.matrix[1] * self.matrix[12]) / det,
                (self.matrix[7] * self.matrix[1] - self.matrix[3] * self.matrix[5]) / det,
                -(self.matrix[7] * self.matrix[0] - self.matrix[3] * self.matrix[4]) / det,
                (self.matrix[5] * self.matrix[0] - self.matrix[1] * self.matrix[4]) / det,
            )
        } else {
            Self::IDENTITY
        }
    }

    /// Combine two transforms
    ///
    /// The result is a transform that is equivalent to applying
    /// transform followed by other. Mathematically, it is
    /// equivalent to a matrix multiplication.
    ///
    /// # Arguments
    /// * other - Transform to combine to transform
    pub fn combine(&mut self, other: &Transform) {
        unsafe { ffi::sfTransform_combine(self, other) }
    }

    /// Combine a transform with a translation
    ///
    /// # Arguments
    /// * x - Offset to apply on X axis
    /// * y - Offset to apply on Y axis
    pub fn translate(&mut self, x: f32, y: f32) {
        unsafe { ffi::sfTransform_translate(self, x, y) }
    }

    /// Combine the current transform with a rotation
    ///
    /// # Arguments
    /// * angle - Rotation angle, in degrees
    pub fn rotate(&mut self, angle: f32) {
        unsafe { ffi::sfTransform_rotate(self, angle) }
    }

    /// Combine the current transform with a rotation
    ///
    /// The center of rotation is provided for convenience as a second
    /// argument, so that you can build rotations around arbitrary points
    /// more easily (and efficiently) than the usual
    /// [translate(-center), rotate(angle), translate(center)].
    ///
    /// # Arguments
    /// * angle - Rotation angle, in degrees
    /// * `center_x` - X coordinate of the center of rotation
    /// * `center_y` - Y coordinate of the center of rotation
    pub fn rotate_with_center(&mut self, angle: f32, center_x: f32, center_y: f32) {
        unsafe { ffi::sfTransform_rotateWithCenter(self, angle, center_x, center_y) }
    }

    /// Combine the current transform with a scaling
    ///
    /// # Arguments
    /// * `scale_x` - Scaling factor on the X axis
    /// * `scale_y` - Scaling factor on the Y axis
    pub fn scale(&mut self, scale_x: f32, scale_y: f32) {
        unsafe { ffi::sfTransform_scale(self, scale_x, scale_y) }
    }

    /// Combine the current transform with a scaling
    ///
    /// The center of scaling is provided for convenience as a second
    /// argument, so that you can build scaling around arbitrary points
    /// more easily (and efficiently) than the usual
    /// [translate(-center), scale(factors), translate(center)]
    ///
    /// # Arguments
    /// * `scale_x` - Scaling factor on X axis
    /// * `scale_y` - Scaling factor on Y axis
    /// * `center_x` - X coordinate of the center of scaling
    /// * `center_y` - Y coordinate of the center of scaling
    pub fn scale_with_center(&mut self, scale_x: f32, scale_y: f32, center_x: f32, center_y: f32) {
        unsafe { ffi::sfTransform_scaleWithCenter(self, scale_x, scale_y, center_x, center_y) }
    }

    /// Apply a transform to a 2D point
    ///
    /// # Arguments
    /// * point - Point to transform
    ///
    /// Return a transformed point
    #[must_use]
    pub fn transform_point(&self, point: Vector2f) -> Vector2f {
        unsafe { Vector2f::from_raw(ffi::sfTransform_transformPoint(self, point.raw())) }
    }

    /// Apply a transform to a rectangle
    ///
    /// Since SFML doesn't provide support for oriented rectangles,
    /// the result of this function is always an axis-aligned
    /// rectangle. Which means that if the transform contains a
    /// rotation, the bounding rectangle of the transformed rectangle
    /// is returned.
    ///
    /// # Arguments
    /// rectangle - Rectangle to transform
    ///
    /// Return the transformed rectangle
    #[must_use]
    pub fn transform_rect(&self, rectangle: &FloatRect) -> FloatRect {
        unsafe { FloatRect::from_raw(ffi::sfTransform_transformRect(self, rectangle.raw())) }
    }
}

impl Default for Transform {
    fn default() -> Self {
        Self::IDENTITY
    }
}