1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
use eetf::Term;
use std::io::{self, Read};
use std::iter;
use std::str;

use heck::CamelCase;

use num_traits::cast::{FromPrimitive, ToPrimitive};

use serde::de::{
    self, DeserializeOwned, DeserializeSeed, EnumAccess, IntoDeserializer, MapAccess, SeqAccess,
    VariantAccess, Visitor,
};

use crate::error::{Error, Result};

use self::private::*;

/// Deserializes an `eetf::Term`
///
/// Generally you should use the from_bytes or from_reader functions instead.
pub struct Deserializer<'a> {
    term: &'a Term,
}

impl<'a> Deserializer<'a> {
    pub fn from_term(term: &'a Term) -> Self {
        Deserializer { term }
    }
}

trait IntoEetfDeserializer {
    fn into_deserializer(&self) -> Deserializer;
}

impl IntoEetfDeserializer for Term {
    fn into_deserializer(&self) -> Deserializer {
        Deserializer::from_term(self)
    }
}

// impl<'de, 'a: 'de> From<&'a Term> for Deserializer<'de> {
//     fn from(term: &'a Term) -> Self {
//         Deserializer::from_term(term)
//     }
// }

/// Deserializes some EETF from a Read
pub fn from_reader<R, T>(reader: R) -> Result<T>
where
    R: Read,
    T: DeserializeOwned,
{
    let term = Term::decode(reader)?;
    let deserializer = Deserializer::from_term(&term);
    let t = T::deserialize(deserializer)?;
    Ok(t)
}

/// Deserializes some EETF from a slice of bytes.
pub fn from_bytes<T>(bytes: &[u8]) -> Result<T>
where
    T: DeserializeOwned,
{
    let cursor = io::Cursor::new(bytes);

    from_reader(cursor)
}

// Implementation methods for deserializer that require a lifetime.
impl<'a> Deserializer<'a> {
    fn parse_integer<T>(&self) -> Result<T>
    where
        T: FromPrimitive,
    {
        match self.term {
            Term::FixInteger(fix_int) => {
                if let Some(num) = T::from_i32(fix_int.value) {
                    Ok(num)
                } else {
                    Err(Error::IntegerConvertError)
                }
            }
            Term::BigInteger(big_int) => {
                if let Some(num) = big_int.to_i64() {
                    if let Some(num) = T::from_i64(num) {
                        Ok(num)
                    } else {
                        Err(Error::IntegerConvertError)
                    }
                } else {
                    Err(Error::IntegerConvertError)
                }
            }
            _ => Err(Error::ExpectedFixInteger),
        }
    }

    fn parse_float<T>(&self) -> Result<T>
    where
        T: FromPrimitive,
    {
        match self.term {
            Term::Float(float) => {
                if let Some(num) = T::from_f64(float.value) {
                    Ok(num)
                } else {
                    Err(Error::IntegerConvertError)
                }
            }
            _ => Err(Error::ExpectedFloat),
        }
    }

    fn parse_binary(&self) -> Result<&[u8]> {
        match self.term {
            Term::Binary(binary) => Ok(&binary.bytes),
            _ => Err(Error::ExpectedBinary),
        }
    }

    fn parse_string(&self) -> Result<String> {
        match self.parse_binary() {
            Ok(bytes) => str::from_utf8(&bytes)
                .map(|s| s.to_string())
                .or(Err(Error::Utf8DecodeError)),
            Err(e) => Err(e),
        }
    }
}

impl<'de, 'a: 'de> de::Deserializer<'de> for Deserializer<'a> {
    type Error = Error;

    fn deserialize_any<V>(self, _visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        Err(Error::TypeHintsRequired)
    }

    fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Atom(b) => {
                if b.name == "true" {
                    visitor.visit_bool(true)
                } else if b.name == "false" {
                    visitor.visit_bool(false)
                } else {
                    Err(Error::InvalidBoolean)
                }
            }

            _ => Err(Error::ExpectedBoolean),
        }
    }

    fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_i8(self.parse_integer()?)
    }

    fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_i16(self.parse_integer()?)
    }

    fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_i32(self.parse_integer()?)
    }

    fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_i64(self.parse_integer()?)
    }

    fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_u8(self.parse_integer()?)
    }

    fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_u16(self.parse_integer()?)
    }

    fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_u32(self.parse_integer()?)
    }

    fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_u64(self.parse_integer()?)
    }

    fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_f32(self.parse_float()?)
    }

    fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_f64(self.parse_float()?)
    }

    fn deserialize_char<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.parse_string() {
            Err(Error::ExpectedBinary) => Err(Error::ExpectedChar),
            Err(other) => Err(other),
            Ok(string) => {
                if string.len() == 1 {
                    visitor.visit_char(string.chars().next().unwrap())
                } else {
                    Err(Error::ExpectedChar)
                }
            }
        }
    }

    fn deserialize_str<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_string(self.parse_string()?)
    }

    fn deserialize_string<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_str(visitor)
    }

    fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_bytes(self.parse_binary()?)
    }

    fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_bytes(self.parse_binary()?)
    }

    fn deserialize_option<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Atom(atom) => {
                if atom.name == "nil" {
                    visitor.visit_none()
                } else {
                    visitor.visit_some(self)
                }
            }
            _ => visitor.visit_some(self),
        }
    }

    fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Atom(atom) => {
                if atom.name == "nil" {
                    visitor.visit_unit()
                } else {
                    Err(Error::ExpectedNil)
                }
            }
            _ => Err(Error::ExpectedNil),
        }
    }

    fn deserialize_unit_struct<V>(self, _name: &'static str, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_unit(visitor)
    }

    fn deserialize_newtype_struct<V>(self, _name: &'static str, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        visitor.visit_newtype_struct(self)
    }

    // Deserialization of compound types like sequences and maps happens by
    // passing the visitor an "Access" object that gives it the ability to
    // iterate through the data contained in the sequence.
    fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::List(list) => {
                let seq_deserializer = ListDeserializer::new(list.elements.iter());
                visitor.visit_seq(seq_deserializer)
                // TODO: Figure out how to call end here.
            }
            other => {
                eprintln!("{}", other);
                Err(Error::ExpectedList)
            }
        }
    }

    fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Tuple(tuple) => {
                if tuple.elements.len() != len {
                    return Err(Error::WrongTupleLength);
                }
                let seq_deserializer = ListDeserializer::new(tuple.elements.iter());
                visitor.visit_seq(seq_deserializer)
                // TODO: Figure out how to call end here.
            }
            _ => Err(Error::ExpectedTuple),
        }
    }

    // Tuple structs look just like tuples in EETF.
    fn deserialize_tuple_struct<V>(
        self,
        _name: &'static str,
        len: usize,
        visitor: V,
    ) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        self.deserialize_tuple(len, visitor)
    }

    fn deserialize_map<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Map(map) => {
                let mut map_deserializer = MapDeserializer::new(map.entries.iter());
                visitor.visit_map(&mut map_deserializer).and_then(|result| {
                    match map_deserializer.end() {
                        Ok(()) => Ok(result),
                        Err(e) => Err(e),
                    }
                })
            }
            _ => Err(Error::ExpectedMap),
        }
    }

    fn deserialize_struct<V>(
        self,
        _name: &'static str,
        _fields: &'static [&'static str],
        visitor: V,
    ) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Map(map) => {
                let mut map_deserializer = MapDeserializer::new(map.entries.iter());
                visitor.visit_map(&mut map_deserializer).and_then(|result| {
                    match map_deserializer.end() {
                        Ok(()) => Ok(result),
                        Err(e) => Err(e),
                    }
                })
            }
            _ => Err(Error::ExpectedMap),
        }
    }

    fn deserialize_enum<V>(
        self,
        _name: &'static str,
        _variants: &'static [&'static str],
        visitor: V,
    ) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Atom(atom) => {
                // We have a unit variant.
                visitor.visit_enum(atom.name.to_camel_case().into_deserializer())
            }
            Term::Tuple(tuple) => match tuple.elements.as_slice() {
                [variant_term, value_term] => {
                    visitor.visit_enum(EnumDeserializer::new(&variant_term, &value_term))
                }
                _ => Err(Error::MisSizedVariantTuple),
            },
            _ => Err(Error::ExpectedAtomOrTuple),
        }
    }

    fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Atom(atom) => visitor.visit_string(atom.name.clone()),
            _ => Err(Error::ExpectedAtom),
        }
    }

    fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        // Just skip over this by calling visit_unit.
        visitor.visit_unit()
    }
}

struct ListDeserializer<I>
where
    I: Iterator,
{
    iter: iter::Fuse<I>,
}

impl<I> ListDeserializer<I>
where
    I: Iterator,
{
    fn new(iter: I) -> Self {
        ListDeserializer { iter: iter.fuse() }
    }
}

impl<'de, 'a: 'de, I> SeqAccess<'de> for ListDeserializer<I>
where
    I: Iterator<Item = &'a Term>,
{
    type Error = Error;

    fn next_element_seed<V>(&mut self, seed: V) -> Result<Option<V::Value>>
    where
        V: de::DeserializeSeed<'de>,
    {
        match self.iter.next() {
            Some(term) => seed.deserialize(Deserializer::from_term(term)).map(Some),
            None => Ok(None),
        }
    }
}

// TODO: Look at https://github.com/flavray/avro-rs/blob/master/src/de.rs#L50-L53
// and figure out if we can use it's ideas to simplify all this lifetime shit.

struct MapDeserializer<'de, I, T>
where
    I: Iterator<Item = T>,
    T: Pair<'de> + 'de,
    First<'de, I::Item>: 'de,
    Second<'de, I::Item>: 'de,
{
    items: iter::Fuse<I>,
    current_value: Option<&'de T::Second>,
}

impl<'de, I, T> MapDeserializer<'de, I, T>
where
    I: Iterator<Item = T>,
    T: Pair<'de>,
{
    fn new(iter: I) -> Self {
        MapDeserializer {
            items: iter.fuse(),
            current_value: None,
        }
    }

    fn end(self) -> Result<()> {
        if self.items.count() == 0 {
            Ok(())
        } else {
            Err(Error::TooManyItems)
        }
    }
}

impl<'a, 'de: 'a, I, T> MapAccess<'de> for &'a mut MapDeserializer<'de, I, T>
where
    I: Iterator<Item = T>,
    T: Pair<'de>,
    First<'de, I::Item>: IntoEetfDeserializer,
    Second<'de, I::Item>: IntoEetfDeserializer,
{
    type Error = Error;

    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>>
    where
        K: DeserializeSeed<'de>,
    {
        if self.current_value.is_some() {
            panic!("MapDeserializer.next_key_seed was called twice in a row")
        }

        match self.items.next() {
            Some(pair) => {
                let (key, val) = pair.split();
                self.current_value = Some(val);

                seed.deserialize(key.into_deserializer()).map(Some)
            }
            None => Ok(None),
        }
    }

    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value>
    where
        V: DeserializeSeed<'de>,
    {
        if let Some(value) = self.current_value {
            self.current_value = None;
            seed.deserialize(value.into_deserializer())
        } else {
            panic!("MapDeserializer.next_value_seed was called before next_key_seed")
        }
    }
}

struct EnumDeserializer<'de> {
    variant: &'de Term,
    term: &'de Term,
}

impl<'de> EnumDeserializer<'de> {
    fn new(variant: &'de Term, term: &'de Term) -> Self {
        EnumDeserializer { variant, term }
    }
}

// `EnumAccess` is provided to the `Visitor` to give it the ability to determine
// which variant of the enum is supposed to be deserialized.
//
// Note that all enum deserialization methods in Serde refer exclusively to the
// "externally tagged" enum representation.
impl<'de> EnumAccess<'de> for EnumDeserializer<'de> {
    type Error = Error;
    type Variant = Self;

    fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant)>
    where
        V: DeserializeSeed<'de>,
    {
        let val = seed.deserialize(VariantNameDeserializer::from_term(self.variant))?;
        Ok((val, self))
    }
}

// `VariantAccess` is provided to the `Visitor` to give it the ability to see
// the content of the single variant that it decided to deserialize.
impl<'de> VariantAccess<'de> for EnumDeserializer<'de> {
    type Error = Error;

    // If the `Visitor` expected this variant to be a unit variant, the input
    // should have been the plain string case handled in `deserialize_enum`.
    fn unit_variant(self) -> Result<()> {
        Err(Error::ExpectedAtom)
    }

    // Newtype variants are represented in JSON as `{ NAME: VALUE }` so
    // deserialize the value here.
    fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value>
    where
        T: DeserializeSeed<'de>,
    {
        seed.deserialize(Deserializer::from_term(self.term))
    }

    // Tuple variants are represented in JSON as `{ NAME: [DATA...] }` so
    // deserialize the sequence of data here.
    fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        let deserializer = Deserializer::from_term(self.term);
        de::Deserializer::deserialize_tuple(deserializer, len, visitor)
    }

    // Struct variants are represented in JSON as `{ NAME: { K: V, ... } }` so
    // deserialize the inner map here.
    fn struct_variant<V>(self, _fields: &'static [&'static str], visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        let deserializer = Deserializer::from_term(self.term);
        de::Deserializer::deserialize_map(deserializer, visitor)
    }
}

struct VariantNameDeserializer<'a> {
    term: &'a Term,
}

impl<'a> VariantNameDeserializer<'a> {
    pub fn from_term(term: &'a Term) -> Self {
        VariantNameDeserializer { term }
    }
}

impl<'de, 'a: 'de> de::Deserializer<'de> for VariantNameDeserializer<'a> {
    type Error = Error;

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value>
    where
        V: Visitor<'de>,
    {
        match self.term {
            Term::Atom(atom) => visitor.visit_string(atom.name.to_camel_case()),
            _ => Err(Error::ExpectedAtom),
        }
    }

    forward_to_deserialize_any! {
        bool i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str string
            bytes byte_buf option unit unit_struct newtype_struct seq tuple
            tuple_struct map struct enum identifier ignored_any
    }
}

mod private {
    // Some code I stole from serde.

    /// Avoid having to restate the generic types on `MapDeserializer`. The
    /// `Iterator::Item` contains enough information to figure out K and V.
    pub trait Pair<'a> {
        type First;
        type Second;
        fn split(self) -> &'a (Self::First, Self::Second);
    }

    impl<'a, A, B> Pair<'a> for &'a (A, B) {
        type First = A;
        type Second = B;
        fn split(self) -> &'a (A, B) {
            self
        }
    }

    pub type First<'a, T> = <T as Pair<'a>>::First;
    pub type Second<'a, T> = <T as Pair<'a>>::Second;
}

#[cfg(test)]
mod tests {
    use super::*;

    use eetf::{self, Term};

    // Helper function for tests. Runs things through our serializer then
    // decodes and returns.
    fn deserialize<T>(input: Term) -> T
    where
        T: DeserializeOwned,
    {
        let mut cursor = io::Cursor::new(vec![]);
        Term::encode(&input, &mut cursor).expect("encode failed");

        from_bytes(&cursor.into_inner()).expect("deserialize failed")
    }

    #[test]
    fn test_unsigned_ints_and_structs() {
        #[derive(Deserialize, Debug, PartialEq)]
        struct TestStruct {
            unsigned8: u8,
            unsigned16: u16,
            unsigned32: u32,
            unsigned64: u64,
        }

        let result: TestStruct = deserialize(Term::Map(eetf::Map::from(vec![
            (
                Term::Atom(eetf::Atom::from("unsigned8")),
                Term::FixInteger(eetf::FixInteger::from(129)),
            ),
            (
                Term::Atom(eetf::Atom::from("unsigned16")),
                Term::FixInteger(eetf::FixInteger::from(65530)),
            ),
            (
                Term::Atom(eetf::Atom::from("unsigned32")),
                Term::BigInteger(eetf::BigInteger::from(65530)),
            ),
            (
                Term::Atom(eetf::Atom::from("unsigned64")),
                Term::BigInteger(eetf::BigInteger::from(65530)),
            ),
        ])));

        assert_eq!(
            result,
            TestStruct {
                unsigned8: 129,
                unsigned16: 65530,
                unsigned32: 65530,
                unsigned64: 65530,
            }
        )
    }

    #[test]
    fn test_signed_ints_and_tuple_structs() {
        #[derive(Deserialize, Debug, PartialEq)]
        struct TestStruct(i8, i16, i32, i64);

        let result: TestStruct = deserialize(Term::Tuple(eetf::Tuple::from(vec![
            Term::FixInteger(eetf::FixInteger::from(-127)),
            Term::FixInteger(eetf::FixInteger::from(30000)),
            Term::FixInteger(eetf::FixInteger::from(65530)),
            Term::BigInteger(eetf::BigInteger::from(65530)),
        ])));
        assert_eq!(result, TestStruct(-127, 30000, 65530, 65530))
    }

    #[test]
    fn test_binaries_tuples_and_lists() {
        let result: (String, Vec<u8>) = deserialize(Term::Tuple(eetf::Tuple::from(vec![
            Term::Binary(eetf::Binary::from("ABCD".as_bytes())),
            Term::List(eetf::List::from(vec![
                Term::FixInteger(eetf::FixInteger::from(0)),
                Term::FixInteger(eetf::FixInteger::from(1)),
                Term::FixInteger(eetf::FixInteger::from(2)),
            ])),
        ])));

        assert_eq!(result, ("ABCD".to_string(), vec![0, 1, 2]))
    }

    #[test]
    fn test_option() {
        let nil_result: Option<u8> = deserialize(Term::Atom(eetf::Atom::from("nil")));
        let some_result: Option<u8> = deserialize(Term::FixInteger(eetf::FixInteger::from(0)));

        assert_eq!(nil_result, None);

        assert_eq!(some_result, Some(0));
    }

    #[test]
    fn test_unit_variant() {
        #[derive(Deserialize, Debug, PartialEq)]
        enum E {
            AnOption,
            AnotherOption,
        };

        let result: E = deserialize(Term::Atom(eetf::Atom::from("an_option")));

        assert_eq!(result, E::AnOption);
    }

    #[test]
    fn test_newtype_variant() {
        // Not 100% sure if this is a tuple variant or a newtype variant.
        // But whatever I guess?
        #[derive(Deserialize, Debug, PartialEq)]
        enum ErlResult {
            Ok(String),
        };

        let result: ErlResult = deserialize(Term::Tuple(eetf::Tuple::from(vec![
            Term::Atom(eetf::Atom::from("ok")),
            Term::Binary(eetf::Binary::from("test".as_bytes())),
        ])));

        assert_eq!(result, ErlResult::Ok("test".to_string()));
    }

    #[test]
    fn test_tuple_variant() {
        // Not 100% sure if this is a tuple variant or a newtype variant.
        // But whatever I guess?
        #[derive(Deserialize, Debug, PartialEq)]
        enum Testing {
            Ok(u8, u8),
        };

        let result: Testing = deserialize(Term::Tuple(eetf::Tuple::from(vec![
            Term::Atom(eetf::Atom::from("ok")),
            Term::Tuple(eetf::Tuple::from(vec![
                Term::FixInteger(eetf::FixInteger::from(1)),
                Term::FixInteger(eetf::FixInteger::from(2)),
            ])),
        ])));

        assert_eq!(result, Testing::Ok(1, 2));
    }
    // TODO: test actual maps, as well as structs.  Suspect they're broken.
    // some quickcheck based roundtrip tests would also be great.
}