1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Copyright 2018 Althea Developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use error::{Error, Result};
use rlp;
use serde::ser::{self, Serialize};
use std::collections::VecDeque;
use std::marker::Sized;

pub struct Serializer {
    // This is a vector of bytes that starts empty and bytes of RLP is appended as
    // values are serialized.
    output: Vec<u8>,
    // When going deeper into the structure (i.e. when processing vector of vectors)
    // this buffer is used to keep track of state "before" going deeper.
    // This way we can save the state, and serialize nested sequence alone, and then
    // once we're done with that sequence, we can go back to the saved state.
    buffer: VecDeque<Vec<u8>>,
}

// By convention, the public API of a Serde deserializer is one or more `to_abc`
// functions such as `to_string`, `to_bytes`, or `to_writer` depending on what
// Rust types the serializer is able to produce as output.
//
// This basic serializer supports only `to_bytes`.
pub fn to_bytes<T>(value: &T) -> Result<Vec<u8>>
where
    T: Serialize,
{
    let mut serializer = Serializer {
        output: Vec::new(),
        buffer: VecDeque::new(),
    };
    value.serialize(&mut serializer)?;
    Ok(serializer.output)
}

impl<'a> ser::Serializer for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    // Associated types for keeping track of additional state while serializing
    // compound data structures like sequences and maps. In this case no
    // additional state is required beyond what is already stored in the
    // Serializer struct.
    type SerializeSeq = Self;
    type SerializeTuple = Self;
    type SerializeTupleStruct = Self;
    type SerializeTupleVariant = Self;
    type SerializeMap = Self;
    type SerializeStruct = Self;
    type SerializeStructVariant = Self;

    fn serialize_bool(self, _v: bool) -> Result<()> {
        unimplemented!();
    }

    // JSON does not distinguish between different sizes of integers, so all
    // signed integers will be serialized the same and all unsigned integers
    // will be serialized the same. Other formats, especially compact binary
    // formats, may need independent logic for the different sizes.
    fn serialize_i8(self, v: i8) -> Result<()> {
        self.serialize_i64(i64::from(v))
    }

    fn serialize_i16(self, v: i16) -> Result<()> {
        self.serialize_i64(i64::from(v))
    }

    fn serialize_i32(self, v: i32) -> Result<()> {
        self.serialize_i64(i64::from(v))
    }

    // Not particularly efficient but this is example code anyway. A more
    // performant approach would be to use the `itoa` crate.
    fn serialize_i64(self, _v: i64) -> Result<()> {
        unimplemented!();
    }

    fn serialize_u8(self, v: u8) -> Result<()> {
        self.serialize_bytes(&rlp::encode_number(v))
    }

    fn serialize_u16(self, v: u16) -> Result<()> {
        self.serialize_bytes(&rlp::encode_number(v))
    }

    fn serialize_u32(self, v: u32) -> Result<()> {
        self.serialize_bytes(&rlp::encode_number(v))
    }

    fn serialize_u64(self, v: u64) -> Result<()> {
        self.serialize_bytes(&rlp::encode_number(v))
    }

    fn serialize_f32(self, _v: f32) -> Result<()> {
        unimplemented!();
    }

    fn serialize_f64(self, _v: f64) -> Result<()> {
        unimplemented!();
    }

    fn serialize_char(self, v: char) -> Result<()> {
        self.serialize_str(&v.to_string())
    }

    fn serialize_str(self, v: &str) -> Result<()> {
        if v.len() == 1 && v.as_bytes()[0] < 0x80 {
            self.output.extend(v.as_bytes());
        } else {
            self.output.extend(rlp::encode_length(v.len() as u64, 0x80));
            self.output.extend(v.as_bytes());
        }
        Ok(())
    }

    fn serialize_bytes(self, v: &[u8]) -> Result<()> {
        // TODO: There is some duplication here that could be resolved later
        if v.len() == 1 && v[0] < 0x80 {
            self.output.extend(v);
        } else {
            self.output.extend(rlp::encode_length(v.len() as u64, 0x80));
            self.output.extend(v);
        }
        Ok(())
    }

    // An absent optional is represented as the JSON `null`.
    fn serialize_none(self) -> Result<()> {
        unimplemented!();
    }

    fn serialize_some<T>(self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        // TODO: This probably can't be done better without introducing our own convention as described in RLP specification.
        value.serialize(self)
    }

    fn serialize_unit(self) -> Result<()> {
        // TODO: How to serialize unit types?
        unimplemented!();
    }

    fn serialize_unit_struct(self, _name: &'static str) -> Result<()> {
        unimplemented!();
    }

    fn serialize_unit_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        variant: &'static str,
    ) -> Result<()> {
        self.serialize_str(variant)
    }

    fn serialize_newtype_struct<T>(self, _name: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(self)
    }

    fn serialize_newtype_variant<T>(
        self,
        _name: &'static str,
        _variant_index: u32,
        variant: &'static str,
        value: &T,
    ) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        variant.serialize(&mut *self)?;
        value.serialize(&mut *self)?;
        Ok(())
    }

    fn serialize_seq(self, _len: Option<usize>) -> Result<Self::SerializeSeq> {
        // Before going deeper we have to introduce state to our serializer.
        // This way we can capture output from a processed sequence.
        // Once thats done, we can pop current state at the end of the sequence.
        // We don't really care about the passed length as length is mostly unused,
        // as sequences are converted to bytes first, and then the length is
        // length of actual bytes of data.
        self.buffer.push_front(self.output.clone());
        self.output.clear();
        Ok(self)
    }

    fn serialize_tuple(self, len: usize) -> Result<Self::SerializeTuple> {
        // This works the same as normal sequence. Len is not used, but thats what
        // trait needs.
        self.serialize_seq(Some(len))
    }

    // Tuple structs look just like sequences in JSON.
    fn serialize_tuple_struct(
        self,
        _name: &'static str,
        len: usize,
    ) -> Result<Self::SerializeTupleStruct> {
        // Tuple structs works the same as normal tuple (and thus like a normal sequence)
        self.serialize_seq(Some(len))
    }

    fn serialize_tuple_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleVariant> {
        variant.serialize(&mut *self)?;
        Ok(self)
    }

    fn serialize_map(self, _len: Option<usize>) -> Result<Self::SerializeMap> {
        // Same as for sequences - we need to save current state of output,
        // to be able to capture serialized values.
        self.buffer.push_front(self.output.clone());
        self.output.clear();
        Ok(self)
    }

    fn serialize_struct(self, _name: &'static str, len: usize) -> Result<Self::SerializeStruct> {
        self.serialize_map(Some(len))
    }

    fn serialize_struct_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeStructVariant> {
        variant.serialize(&mut *self)?;
        Ok(self)
    }
}

impl<'a> ser::SerializeSeq for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        // Serialize element of a sequence just fine
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        // Calculate the serialization of the sequence based on the captured output.
        // Note that this output is cleared out before returning SerializeSeq instance,
        // and saved on a deque.
        let mut prefix = rlp::encode_length(self.output.len() as u64, 0xc0);
        prefix.extend(self.output.clone());
        // This will get the current output, and after that pop the top of the buffer,
        // which is the output *before* serializing the sequence.
        self.output = self.buffer.pop_front().unwrap(); // This unwrap is safe assuming the normal path of the code.
        self.output.extend(prefix);
        Ok(())
    }
}

// Same thing but for tuples.
impl<'a> ser::SerializeTuple for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        let mut prefix = rlp::encode_length(self.output.len() as u64, 0xc0);
        prefix.extend(self.output.clone());
        // Restore original state after capturing this sequence
        self.output = self.buffer.pop_front().unwrap();
        self.output.extend(prefix);
        Ok(())
    }
}

// Same thing but for tuple structs.
impl<'a> ser::SerializeTupleStruct for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a> ser::SerializeTupleVariant for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a> ser::SerializeMap for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_key<T>(&mut self, key: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        key.serialize(&mut **self)
    }

    fn serialize_value<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a> ser::SerializeStruct for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        // Serialize element of a structure as a sequence [key, value].
        let dummy_seq = (&key, &value);
        dummy_seq.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        let mut prefix = rlp::encode_length(self.output.len() as u64, 0xc0);
        prefix.extend(self.output.clone());
        self.output = self.buffer.pop_front().unwrap(); // This unwrap is safe assuming the normal path of the code.
        self.output.extend(prefix);
        Ok(())
    }
}

impl<'a> ser::SerializeStructVariant for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        key.serialize(&mut **self)?;
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

#[test]
fn test_emptystring() {
    assert_eq!(to_bytes(&"".to_string()).unwrap(), [0x80]);
}

#[test]
fn test_shortstring() {
    assert_eq!(
        to_bytes(&"dog".to_string()).unwrap(),
        [0x83, 0x64, 0x6f, 0x67]
    );
}

#[test]
fn test_shortlist() {
    assert_eq!(
        to_bytes(&vec!["cat", "dog"]).unwrap(),
        [0xc8, 0x83, 0x63, 0x61, 0x74, 0x83, 0x64, 0x6f, 0x67]
    );
}

#[test]
fn test_shortlist_as_tuple() {
    let data = ("cat", "dog");
    assert_eq!(
        to_bytes(&data).unwrap(),
        [0xc8, 0x83, 0x63, 0x61, 0x74, 0x83, 0x64, 0x6f, 0x67]
    );
}

#[test]
fn test_wrapped_shortlist() {
    assert_eq!(
        to_bytes(&vec![vec!["cat", "dog"]]).unwrap(),
        [0xc9, 0xc8, 0x83, 0x63, 0x61, 0x74, 0x83, 0x64, 0x6f, 0x67]
    );
}

#[test]
fn test_nested_shortlist() {
    assert_eq!(
        to_bytes(&vec![vec!["cat", "dog"], vec!["cat", "dog"]]).unwrap(),
        [
            0xd2, 0xc8, 0x83, 0x63, 0x61, 0x74, 0x83, 0x64, 0x6f, 0x67, 0xc8, 0x83, 0x63, 0x61,
            0x74, 0x83, 0x64, 0x6f, 0x67,
        ]
    );
}

#[test]
fn test_long_string() {
    assert_eq!(
        to_bytes(&"Lorem ipsum dolor sit amet, consectetur adipisicing elit".to_string()).unwrap(),
        vec![
            0xb8, 0x38, 0x4c, 0x6f, 0x72, 0x65, 0x6d, 0x20, 0x69, 0x70, 0x73, 0x75, 0x6d, 0x20,
            0x64, 0x6f, 0x6c, 0x6f, 0x72, 0x20, 0x73, 0x69, 0x74, 0x20, 0x61, 0x6d, 0x65, 0x74,
            0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x65, 0x63, 0x74, 0x65, 0x74, 0x75, 0x72, 0x20,
            0x61, 0x64, 0x69, 0x70, 0x69, 0x73, 0x69, 0x63, 0x69, 0x6e, 0x67, 0x20, 0x65, 0x6c,
            0x69, 0x74,
        ]
    );
}

#[test]
fn test_integer_0() {
    assert_eq!(to_bytes(&0u8).unwrap(), vec![0x00]);
}

#[test]
fn test_integer_15() {
    assert_eq!(to_bytes(&15u8).unwrap(), vec![0x0f]);
}

#[test]
fn test_integer_1024() {
    assert_eq!(to_bytes(&1024u16).unwrap(), vec![0x82, 0x04, 0x00]);
}

#[test]
fn test_integer_1024_u32() {
    assert_eq!(to_bytes(&1024u32).unwrap(), vec![0x82, 0x04, 0x00]);
}

#[test]
fn test_array() {
    // "The set theoretical representation of three"
    let data = vec![vec![], vec![vec![]], vec![vec![], vec![Vec::<u8>::new()]]];
    assert_eq!(
        to_bytes(&data).unwrap(),
        [0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0]
    );
}

#[test]
fn test_kv() {
    let data = vec![vec!["key1", "value1"], vec!["key2", "value2"]];
    assert_eq!(
        to_bytes(&data).unwrap(),
        [
            0xda, 0xcc, 0x84, 0x6b, 0x65, 0x79, 0x31, 0x86, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x31,
            0xcc, 0x84, 0x6b, 0x65, 0x79, 0x32, 0x86, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x32
        ]
    );
}