Struct sequoia_openpgp::packet::signature::subpacket::CLOCK_SKEW_TOLERANCE[][src]

pub struct CLOCK_SKEW_TOLERANCE { /* fields omitted */ }
Expand description

The default amount of tolerance to use when comparing some timestamps.

Used by Subpacket::signature_alive.

When determining whether a timestamp generated on another machine is valid now, we need to account for clock skew. (Note: you don’t normally need to consider clock skew when evaluating a signature’s validity at some time in the past.)

We tolerate half an hour of skew based on the following anecdote: In 2019, a developer using Sequoia in a Windows VM running inside of Virtual Box on Mac OS X reported that he typically observed a few minutes of clock skew and occasionally saw over 20 minutes of clock skew.

Note: when new messages override older messages, and their signatures are evaluated at some arbitrary point in time, an application may not see a consistent state if it uses a tolerance. Consider an application that has two messages and wants to get the current message at time te:

  • t0: message 0
  • te: “get current message”
  • t1: message 1

If te is close to t1, then t1 may be considered valid, which is probably not what you want.

Methods from Deref<Target = Duration>

Returns true if this Duration spans no time.

Examples
use std::time::Duration;

assert!(Duration::ZERO.is_zero());
assert!(Duration::new(0, 0).is_zero());
assert!(Duration::from_nanos(0).is_zero());
assert!(Duration::from_secs(0).is_zero());

assert!(!Duration::new(1, 1).is_zero());
assert!(!Duration::from_nanos(1).is_zero());
assert!(!Duration::from_secs(1).is_zero());

Returns the number of whole seconds contained by this Duration.

The returned value does not include the fractional (nanosecond) part of the duration, which can be obtained using subsec_nanos.

Examples
use std::time::Duration;

let duration = Duration::new(5, 730023852);
assert_eq!(duration.as_secs(), 5);

To determine the total number of seconds represented by the Duration, use as_secs in combination with subsec_nanos:

use std::time::Duration;

let duration = Duration::new(5, 730023852);

assert_eq!(5.730023852,
           duration.as_secs() as f64
           + duration.subsec_nanos() as f64 * 1e-9);

Returns the fractional part of this Duration, in whole milliseconds.

This method does not return the length of the duration when represented by milliseconds. The returned number always represents a fractional portion of a second (i.e., it is less than one thousand).

Examples
use std::time::Duration;

let duration = Duration::from_millis(5432);
assert_eq!(duration.as_secs(), 5);
assert_eq!(duration.subsec_millis(), 432);

Returns the fractional part of this Duration, in whole microseconds.

This method does not return the length of the duration when represented by microseconds. The returned number always represents a fractional portion of a second (i.e., it is less than one million).

Examples
use std::time::Duration;

let duration = Duration::from_micros(1_234_567);
assert_eq!(duration.as_secs(), 1);
assert_eq!(duration.subsec_micros(), 234_567);

Returns the fractional part of this Duration, in nanoseconds.

This method does not return the length of the duration when represented by nanoseconds. The returned number always represents a fractional portion of a second (i.e., it is less than one billion).

Examples
use std::time::Duration;

let duration = Duration::from_millis(5010);
assert_eq!(duration.as_secs(), 5);
assert_eq!(duration.subsec_nanos(), 10_000_000);

Returns the total number of whole milliseconds contained by this Duration.

Examples
use std::time::Duration;

let duration = Duration::new(5, 730023852);
assert_eq!(duration.as_millis(), 5730);

Returns the total number of whole microseconds contained by this Duration.

Examples
use std::time::Duration;

let duration = Duration::new(5, 730023852);
assert_eq!(duration.as_micros(), 5730023);

Returns the total number of nanoseconds contained by this Duration.

Examples
use std::time::Duration;

let duration = Duration::new(5, 730023852);
assert_eq!(duration.as_nanos(), 5730023852);

Returns the number of seconds contained by this Duration as f64.

The returned value does include the fractional (nanosecond) part of the duration.

Examples
use std::time::Duration;

let dur = Duration::new(2, 700_000_000);
assert_eq!(dur.as_secs_f64(), 2.7);

Returns the number of seconds contained by this Duration as f32.

The returned value does include the fractional (nanosecond) part of the duration.

Examples
use std::time::Duration;

let dur = Duration::new(2, 700_000_000);
assert_eq!(dur.as_secs_f32(), 2.7);

Trait Implementations

The resulting type after dereferencing.

Dereferences the value.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

Should always be Self

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.