1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
//! A module for storing key-value pairs in flash with minimal erase cycles.
//!
//! When a key-value is stored, it overwrites the any old items with the same key.
//!
//! ## Basic API:
//!
//! ```rust
//! # use sequential_storage::map::{store_item, fetch_item};
//! # use sequential_storage::cache::NoCache;
//! # use mock_flash::MockFlashBase;
//! # use futures::executor::block_on;
//! # type Flash = MockFlashBase<10, 1, 4096>;
//! # mod mock_flash {
//! # include!("mock_flash.rs");
//! # }
//! # fn init_flash() -> Flash {
//! # Flash::new(mock_flash::WriteCountCheck::Twice, None, false)
//! # }
//!
//! # block_on(async {
//! // Initialize the flash. This can be internal or external
//! let mut flash = init_flash();
//! // These are the flash addresses in which the crate will operate.
//! // The crate will not read, write or erase outside of this range.
//! let flash_range = 0x1000..0x3000;
//! // We need to give the crate a buffer to work with.
//! // It must be big enough to serialize the biggest value of your storage type in,
//! // rounded up to to word alignment of the flash. Some kinds of internal flash may require
//! // this buffer to be aligned in RAM as well.
//! let mut data_buffer = [0; 128];
//!
//! // We can fetch an item from the flash. We're using `u8` as our key type and `u32` as our value type.
//! // Nothing is stored in it yet, so it will return None.
//!
//! assert_eq!(
//! fetch_item::<u8, u32, _>(
//! &mut flash,
//! flash_range.clone(),
//! &mut NoCache::new(),
//! &mut data_buffer,
//! 42,
//! ).await.unwrap(),
//! None
//! );
//!
//! // Now we store an item the flash with key 42.
//! // Again we make sure we pass the correct key and value types, u8 and u32.
//! // It is important to do this consistently.
//!
//! store_item(
//! &mut flash,
//! flash_range.clone(),
//! &mut NoCache::new(),
//! &mut data_buffer,
//! 42u8,
//! &104729u32,
//! ).await.unwrap();
//!
//! // When we ask for key 42, we not get back a Some with the correct value
//!
//! assert_eq!(
//! fetch_item::<u8, u32, _>(
//! &mut flash,
//! flash_range.clone(),
//! &mut NoCache::new(),
//! &mut data_buffer,
//! 42,
//! ).await.unwrap(),
//! Some(104729)
//! );
//! # });
//! ```
//!
//! ## Key and value traits
//!
//! In the previous example we saw we used one key and one value type.
//! It is ***crucial*** we use the same key type every time on the same range of flash.
//! This is because the internal items are serialized as `[key|value]`. A different key type
//! will have a different length and will make all data nonsense.
//!
//! However, if we have special knowledge about what we store for each key,
//! we are allowed to use different value types.
//!
//! For example, we can do the following:
//!
//! 1. Store a u32 with key 0
//! 2. Store a custom type 'Foo' with key 1
//! 3. Fetch a u32 with key 0
//! 4. Fetch a custom type 'Foo' with key 1
//!
//! It is up to the user to make sure this is done correctly.
//! If done incorrectly, the deserialize function of requested value type will see
//! data it doesn't expect. In the best case it'll return an error, in a bad case it'll
//! give bad invalid data and in the worst case the deserialization code panics.
//! So be careful.
//!
//! For your convenience there are premade implementations for the [Key] and [Value] traits.
//!
use embedded_storage_async::nor_flash::MultiwriteNorFlash;
use crate::item::{find_next_free_item_spot, Item, ItemHeader, ItemIter};
use self::{
cache::{KeyCacheImpl, PrivateKeyCacheImpl},
item::{ItemHeaderIter, ItemUnborrowed},
};
use super::*;
/// Get the last stored value from the flash that is associated with the given key.
/// If no value with the key is found, None is returned.
///
/// The data buffer must be long enough to hold the longest serialized data of your [Key] + [Value] types combined,
/// rounded up to flash word alignment.
///
/// <div class="warning">
///
/// *You are required to, on a given flash range, use the same [Key] type every time. You are allowed to use*
/// *multiple [Value] types. See the module-level docs for more information about this.*
///
/// Also watch out for using integers. This function will take any integer and it's easy to pass the wrong type.
///
/// </div>
pub async fn fetch_item<'d, K: Key, V: Value<'d>, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl KeyCacheImpl<K>,
data_buffer: &'d mut [u8],
search_key: K,
) -> Result<Option<V>, Error<S::Error>> {
let result = run_with_auto_repair!(
function = {
fetch_item_with_location(
flash,
flash_range.clone(),
cache,
data_buffer,
search_key.clone(),
)
.await
},
repair = try_repair::<K, _>(flash, flash_range.clone(), cache, data_buffer).await?
);
let Some((item, _, item_key_len)) = result? else {
return Ok(None);
};
let data_len = item.header.length as usize;
let item_key_len = match item_key_len {
Some(item_key_len) => item_key_len,
None => K::get_len(&data_buffer[..data_len])?,
};
Ok(Some(
V::deserialize_from(&data_buffer[item_key_len..][..data_len - item_key_len])
.map_err(Error::SerializationError)?,
))
}
/// Fetch the item, but with the item unborrowed, the address of the item and the length of the key
#[allow(clippy::type_complexity)]
async fn fetch_item_with_location<'d, K: Key, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl PrivateKeyCacheImpl<K>,
data_buffer: &'d mut [u8],
search_key: K,
) -> Result<Option<(ItemUnborrowed, u32, Option<usize>)>, Error<S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(flash_range.end - flash_range.start >= S::ERASE_SIZE as u32 * 2);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 3);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
if cache.is_dirty() {
cache.invalidate_cache_state();
}
'cache: {
if let Some(cached_location) = cache.key_location(&search_key) {
let page_index = calculate_page_index::<S>(flash_range.clone(), cached_location);
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), page_index)
- S::WORD_SIZE as u32;
let Some(header) =
ItemHeader::read_new(flash, cached_location, page_data_end_address).await?
else {
// The cache points to a non-existing item?
if cfg!(feature = "_test") {
panic!("Wrong cache value. Addr: {cached_location}");
}
cache.invalidate_cache_state();
break 'cache;
};
let item = header
.read_item(flash, data_buffer, cached_location, page_data_end_address)
.await?;
match item {
item::MaybeItem::Corrupted(_, _) | item::MaybeItem::Erased(_, _) => {
if cfg!(feature = "_test") {
panic!("Wrong cache value. Addr: {cached_location}");
}
// The cache points to a corrupted or erased item?
cache.invalidate_cache_state();
break 'cache;
}
item::MaybeItem::Present(item) => {
return Ok(Some((item.unborrow(), cached_location, None)));
}
}
}
}
// We need to find the page we were last using. This should be the only partial open page.
let mut last_used_page =
find_first_page(flash, flash_range.clone(), cache, 0, PageState::PartialOpen).await?;
if last_used_page.is_none() {
// In the event that all pages are still open or the last used page was just closed, we search for the first open page.
// If the page one before that is closed, then that's the last used page.
if let Some(first_open_page) =
find_first_page(flash, flash_range.clone(), cache, 0, PageState::Open).await?
{
let previous_page = previous_page::<S>(flash_range.clone(), first_open_page);
if get_page_state(flash, flash_range.clone(), cache, previous_page)
.await?
.is_closed()
{
last_used_page = Some(previous_page);
} else {
// The page before the open page is not closed, so it must be open.
// This means that all pages are open and that we don't have any items yet.
cache.unmark_dirty();
return Ok(None);
}
} else {
// There are no open pages, so everything must be closed.
// Something is up and this should never happen.
// To recover, we will just erase all the flash.
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
}
}
// We must now find the most recent storage item with the key that was asked for.
// If we don't find it in the current page, then we check again in the previous page if that page is closed.
let mut current_page_to_check = last_used_page.unwrap();
let mut newest_found_item_data = None;
loop {
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), current_page_to_check)
+ S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), current_page_to_check)
- S::WORD_SIZE as u32;
let mut it = ItemIter::new(page_data_start_address, page_data_end_address);
while let Some((item, address)) = it.next(flash, data_buffer).await? {
let (found_key, found_key_len) = K::deserialize_from(item.data())?;
if found_key == search_key {
newest_found_item_data = Some((address, found_key_len));
}
}
// We've found the item! We can stop searching
if let Some((newest_found_item_address, _)) = newest_found_item_data.as_ref() {
cache.notice_key_location(search_key, *newest_found_item_address, false);
break;
}
// We have not found the item. We've got to look in the previous page, but only if that page is closed and contains data.
let previous_page = previous_page::<S>(flash_range.clone(), current_page_to_check);
if get_page_state(flash, flash_range.clone(), cache, previous_page).await?
!= PageState::Closed
{
// We've looked through all the pages with data and couldn't find the item
cache.unmark_dirty();
return Ok(None);
}
current_page_to_check = previous_page;
}
cache.unmark_dirty();
// We now need to reread the item because we lost all its data other than its address
if let Some((newest_found_item_address, newest_found_item_key_len)) = newest_found_item_data {
let item = ItemHeader::read_new(flash, newest_found_item_address, u32::MAX)
.await?
.ok_or_else(|| {
// How come there's no item header here!? We just found it!
Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
}
})?
.read_item(flash, data_buffer, newest_found_item_address, u32::MAX)
.await?;
Ok(Some((
item.unwrap()?.unborrow(),
newest_found_item_address,
Some(newest_found_item_key_len),
)))
} else {
Ok(None)
}
}
/// Store a key-value pair into flash memory.
/// It will overwrite the last value that has the same key.
/// The flash needs to be at least 2 pages long.
///
/// The data buffer must be long enough to hold the longest serialized data of your [Key] + [Value] types combined,
/// rounded up to flash word alignment.
///
/// <div class="warning">
///
/// *You are required to, on a given flash range, use the same [Key] type every time. You are allowed to use*
/// *multiple [Value] types. See the module-level docs for more information about this.*
///
/// Also watch out for using integers. This function will take any integer and it's easy to pass the wrong type.
///
/// </div>
pub async fn store_item<'d, K: Key, V: Value<'d>, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl KeyCacheImpl<K>,
data_buffer: &mut [u8],
key: K,
item: &V,
) -> Result<(), Error<S::Error>> {
run_with_auto_repair!(
function = store_item_inner(
flash,
flash_range.clone(),
cache,
data_buffer,
key.clone(),
item
)
.await,
repair = try_repair::<K, _>(flash, flash_range.clone(), cache, data_buffer).await?
)
}
async fn store_item_inner<'d, K: Key, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl KeyCacheImpl<K>,
data_buffer: &mut [u8],
key: K,
item: &dyn Value<'d>,
) -> Result<(), Error<S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(flash_range.end - flash_range.start >= S::ERASE_SIZE as u32 * 2);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 3);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
if cache.is_dirty() {
cache.invalidate_cache_state();
}
let mut recursion_level = 0;
loop {
// Check if we're in an infinite recursion which happens when we don't have enough space to store the new data
if recursion_level == get_pages::<S>(flash_range.clone(), 0).count() {
cache.unmark_dirty();
return Err(Error::FullStorage);
}
// If there is a partial open page, we try to write in that first if there is enough space
let next_page_to_use = if let Some(partial_open_page) =
find_first_page(flash, flash_range.clone(), cache, 0, PageState::PartialOpen).await?
{
// We found a partial open page, but at this point it's relatively cheap to do a consistency check
if !get_page_state(
flash,
flash_range.clone(),
cache,
next_page::<S>(flash_range.clone(), partial_open_page),
)
.await?
.is_open()
{
// Oh oh, the next page which serves as the buffer page is not open. We're corrupt.
// This likely happened because of an unexpected shutdown during data migration from the
// then new buffer page to the new partial open page.
// The repair function should be able to repair this.
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
}
// We've got to search where the free space is since the page starts with items present already
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), partial_open_page)
+ S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), partial_open_page)
- S::WORD_SIZE as u32;
let key_len = key.serialize_into(data_buffer)?;
let item_data_length = key_len
+ item
.serialize_into(&mut data_buffer[key_len..])
.map_err(Error::SerializationError)?;
if item_data_length > u16::MAX as usize
|| item_data_length
> calculate_page_size::<S>()
.saturating_sub(ItemHeader::data_address::<S>(0) as usize)
{
cache.unmark_dirty();
return Err(Error::ItemTooBig);
}
let free_spot_address = find_next_free_item_spot(
flash,
flash_range.clone(),
cache,
page_data_start_address,
page_data_end_address,
item_data_length as u32,
)
.await?;
match free_spot_address {
Some(free_spot_address) => {
cache.notice_key_location(key.clone(), free_spot_address, true);
Item::write_new(
flash,
flash_range.clone(),
cache,
free_spot_address,
&data_buffer[..item_data_length],
)
.await?;
cache.unmark_dirty();
return Ok(());
}
None => {
// The item doesn't fit here, so we need to close this page and move to the next
close_page(flash, flash_range.clone(), cache, partial_open_page).await?;
Some(next_page::<S>(flash_range.clone(), partial_open_page))
}
}
} else {
None
};
// If we get here, there was no partial page found or the partial page has now been closed because the item didn't fit.
// If there was a partial page, then we need to look at the next page. It's supposed to be open since it was the previous empty buffer page.
// The new buffer page has to be emptied if it was closed.
// If there was no partial page, we just use the first open page.
match next_page_to_use {
Some(next_page_to_use) => {
let next_page_state =
get_page_state(flash, flash_range.clone(), cache, next_page_to_use).await?;
if !next_page_state.is_open() {
// What was the previous buffer page was not open...
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
}
// Since we're gonna write data here, let's already partially close the page
// This could be done after moving the data, but this is more robust in the
// face of shutdowns and cancellations
partial_close_page(flash, flash_range.clone(), cache, next_page_to_use).await?;
let next_buffer_page = next_page::<S>(flash_range.clone(), next_page_to_use);
let next_buffer_page_state =
get_page_state(flash, flash_range.clone(), cache, next_buffer_page).await?;
if !next_buffer_page_state.is_open() {
migrate_items::<K, _>(
flash,
flash_range.clone(),
cache,
data_buffer,
next_buffer_page,
next_page_to_use,
)
.await?;
}
}
None => {
// There's no partial open page, so we just gotta turn the first open page into a partial open one
let first_open_page =
match find_first_page(flash, flash_range.clone(), cache, 0, PageState::Open)
.await?
{
Some(first_open_page) => first_open_page,
None => {
// Uh oh, no open pages.
// Something has gone wrong.
// We should never get here.
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
}
};
partial_close_page(flash, flash_range.clone(), cache, first_open_page).await?;
}
}
// If we get here, we just freshly partially closed a new page, so the next loop iteration should succeed.
recursion_level += 1;
}
}
/// Fully remove an item. Additional calls to fetch with the same key will return None until
/// a new one is stored again.
///
/// <div class="warning">
/// This is really slow!
///
/// All items in flash have to be read and deserialized to find the items with the key.
/// This is unlikely to be cached well.
/// </div>
///
/// <div class="warning">
///
/// *You are required to, on a given flash range, use the same [Key] type every time. You are allowed to use*
/// *multiple [Value] types. See the module-level docs for more information about this.*
///
/// Also watch out for using integers. This function will take any integer and it's easy to pass the wrong type.
///
/// </div>
pub async fn remove_item<K: Key, S: MultiwriteNorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl KeyCacheImpl<K>,
data_buffer: &mut [u8],
search_key: K,
) -> Result<(), Error<S::Error>> {
run_with_auto_repair!(
function = remove_item_inner::<K, _>(
flash,
flash_range.clone(),
cache,
data_buffer,
search_key.clone()
)
.await,
repair = try_repair::<K, _>(flash, flash_range.clone(), cache, data_buffer).await?
)
}
async fn remove_item_inner<K: Key, S: MultiwriteNorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl KeyCacheImpl<K>,
data_buffer: &mut [u8],
search_key: K,
) -> Result<(), Error<S::Error>> {
cache.notice_key_erased(&search_key);
// Search for the last used page. We're gonna erase from the one after this first.
// If we get an early shutoff or cancellation, this will make it so that we don't return
// an old version of the key on the next fetch.
let last_used_page =
find_first_page(flash, flash_range.clone(), cache, 0, PageState::PartialOpen)
.await?
.unwrap_or_default();
// Go through all the pages
for page_index in get_pages::<S>(
flash_range.clone(),
next_page::<S>(flash_range.clone(), last_used_page),
) {
if get_page_state(flash, flash_range.clone(), cache, page_index)
.await?
.is_open()
{
// This page is open, we don't have to check it
continue;
}
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), page_index) + S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), page_index) - S::WORD_SIZE as u32;
// Go through all items on the page
let mut item_headers = ItemHeaderIter::new(page_data_start_address, page_data_end_address);
while let (Some(item_header), item_address) = item_headers.next(flash).await? {
let item = item_header
.read_item(flash, data_buffer, item_address, page_data_end_address)
.await?;
match item {
item::MaybeItem::Corrupted(_, _) => continue,
item::MaybeItem::Erased(_, _) => continue,
item::MaybeItem::Present(item) => {
let (item_key, _) = K::deserialize_from(item.data())?;
// If this item has the same key as the key we're trying to erase, then erase the item.
// But keep going! We need to erase everything.
if item_key == search_key {
item.header
.erase_data(flash, flash_range.clone(), cache, item_address)
.await?;
}
}
}
}
}
// We're done, we now know the cache is in a good state
cache.unmark_dirty();
Ok(())
}
/// Anything implementing this trait can be used as a key in the map functions.
///
/// It provides a way to serialize and deserialize the key.
///
/// The `Eq` bound is used because we need to be able to compare keys and the
/// `Clone` bound helps us pass the key around.
///
/// The key cannot have a lifetime like the [Value]
pub trait Key: Eq + Clone + Sized {
/// Serialize the key into the given buffer.
/// The serialized size is returned.
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError>;
/// Deserialize the key from the given buffer.
/// The key is returned together with the serialized length.
fn deserialize_from(buffer: &[u8]) -> Result<(Self, usize), SerializationError>;
/// Get the length of the key from the buffer.
/// This is an optimized version of [Self::deserialize_from] that doesn't have to deserialize everything.
fn get_len(buffer: &[u8]) -> Result<usize, SerializationError> {
Self::deserialize_from(buffer).map(|(_, len)| len)
}
}
macro_rules! impl_key_num {
($int:ty) => {
impl Key for $int {
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError> {
let len = core::mem::size_of::<Self>();
if buffer.len() < len {
return Err(SerializationError::BufferTooSmall);
}
buffer[..len].copy_from_slice(&self.to_le_bytes());
Ok(len)
}
fn deserialize_from(buffer: &[u8]) -> Result<(Self, usize), SerializationError> {
let len = core::mem::size_of::<Self>();
if buffer.len() < len {
return Err(SerializationError::BufferTooSmall);
}
Ok((
Self::from_le_bytes(buffer[..len].try_into().unwrap()),
core::mem::size_of::<Self>(),
))
}
fn get_len(_buffer: &[u8]) -> Result<usize, SerializationError> {
Ok(core::mem::size_of::<Self>())
}
}
};
}
impl_key_num!(u8);
impl_key_num!(u16);
impl_key_num!(u32);
impl_key_num!(u64);
impl_key_num!(u128);
impl_key_num!(i8);
impl_key_num!(i16);
impl_key_num!(i32);
impl_key_num!(i64);
impl_key_num!(i128);
impl<const N: usize> Key for [u8; N] {
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError> {
if buffer.len() < N {
return Err(SerializationError::BufferTooSmall);
}
buffer[..N].copy_from_slice(self);
Ok(N)
}
fn deserialize_from(buffer: &[u8]) -> Result<(Self, usize), SerializationError> {
if buffer.len() < N {
return Err(SerializationError::BufferTooSmall);
}
Ok((buffer[..N].try_into().unwrap(), N))
}
fn get_len(_buffer: &[u8]) -> Result<usize, SerializationError> {
Ok(N)
}
}
/// The trait that defines how map values are serialized and deserialized.
///
/// It also carries a lifetime so that zero-copy deserialization is supported.
/// Zero-copy serialization is not supported due to technical restrictions.
pub trait Value<'a> {
/// Serialize the value into the given buffer. If everything went ok, this function returns the length
/// of the used part of the buffer.
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError>;
/// Deserialize the value from the buffer. Because of the added lifetime, the implementation can borrow from the
/// buffer which opens up some zero-copy possibilities.
///
/// The buffer will be the same length as the serialize function returned for this value. Though note that the length
/// is written from flash, so bitflips can affect that (though the length is separately crc-protected) and the key deserialization might
/// return a wrong length.
fn deserialize_from(buffer: &'a [u8]) -> Result<Self, SerializationError>
where
Self: Sized;
}
impl<'a> Value<'a> for &'a [u8] {
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError> {
if buffer.len() < self.len() {
return Err(SerializationError::BufferTooSmall);
}
buffer[..self.len()].copy_from_slice(self);
Ok(self.len())
}
fn deserialize_from(buffer: &'a [u8]) -> Result<Self, SerializationError>
where
Self: Sized,
{
Ok(buffer)
}
}
impl<'a, const N: usize> Value<'a> for [u8; N] {
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError> {
if buffer.len() < self.len() {
return Err(SerializationError::BufferTooSmall);
}
buffer[..self.len()].copy_from_slice(self);
Ok(self.len())
}
fn deserialize_from(buffer: &'a [u8]) -> Result<Self, SerializationError>
where
Self: Sized,
{
buffer
.try_into()
.map_err(|_| SerializationError::BufferTooSmall)
}
}
macro_rules! impl_map_item_num {
($int:ty) => {
impl<'a> Value<'a> for $int {
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, SerializationError> {
buffer[..core::mem::size_of::<Self>()].copy_from_slice(&self.to_le_bytes());
Ok(core::mem::size_of::<Self>())
}
fn deserialize_from(buffer: &[u8]) -> Result<Self, SerializationError> {
Ok(Self::from_le_bytes(
buffer[..core::mem::size_of::<Self>()]
.try_into()
.map_err(|_| SerializationError::BufferTooSmall)?,
))
}
}
};
}
impl_map_item_num!(u8);
impl_map_item_num!(u16);
impl_map_item_num!(u32);
impl_map_item_num!(u64);
impl_map_item_num!(u128);
impl_map_item_num!(i8);
impl_map_item_num!(i16);
impl_map_item_num!(i32);
impl_map_item_num!(i64);
impl_map_item_num!(i128);
impl_map_item_num!(f32);
impl_map_item_num!(f64);
/// Error for map value (de)serialization.
///
/// This error type is predefined (in contrast to using generics) to save many kilobytes of binary size.
#[non_exhaustive]
#[derive(Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "defmt-03", derive(defmt::Format))]
pub enum SerializationError {
/// The provided buffer was too small.
BufferTooSmall,
/// The serialization could not succeed because the data was not in order. (e.g. too big to fit)
InvalidData,
/// The deserialization could not succeed because the bytes are in an invalid format.
InvalidFormat,
/// An implementation defined error that might contain more information than the other predefined
/// error variants.
Custom(i32),
}
impl core::fmt::Display for SerializationError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
SerializationError::BufferTooSmall => write!(f, "Buffer too small"),
SerializationError::InvalidData => write!(f, "Invalid data"),
SerializationError::InvalidFormat => write!(f, "Invalid format"),
SerializationError::Custom(val) => write!(f, "Custom error: {val}"),
}
}
}
async fn migrate_items<K: Key, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl PrivateKeyCacheImpl<K>,
data_buffer: &mut [u8],
source_page: usize,
target_page: usize,
) -> Result<(), Error<S::Error>> {
// We need to move the data from the next buffer page to the next_page_to_use, but only if that data
// doesn't have a newer value somewhere else.
let mut next_page_write_address =
calculate_page_address::<S>(flash_range.clone(), target_page) + S::WORD_SIZE as u32;
let mut it = ItemIter::new(
calculate_page_address::<S>(flash_range.clone(), source_page) + S::WORD_SIZE as u32,
calculate_page_end_address::<S>(flash_range.clone(), source_page) - S::WORD_SIZE as u32,
);
while let Some((item, item_address)) = it.next(flash, data_buffer).await? {
let (key, _) = K::deserialize_from(item.data())?;
let (_, data_buffer) = item.destruct();
// We're in a decent state here
cache.unmark_dirty();
// Search for the newest item with the key we found
let Some((found_item, found_address, _)) = fetch_item_with_location::<K, S>(
flash,
flash_range.clone(),
cache,
data_buffer,
key.clone(),
)
.await?
else {
// We couldn't even find our own item?
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
};
let found_item = found_item.reborrow(data_buffer);
if found_address == item_address {
cache.notice_key_location(key, next_page_write_address, true);
found_item
.write(flash, flash_range.clone(), cache, next_page_write_address)
.await?;
next_page_write_address = found_item
.header
.next_item_address::<S>(next_page_write_address);
}
}
open_page(flash, flash_range.clone(), cache, source_page).await?;
Ok(())
}
/// Try to repair the state of the flash to hopefull get back everything in working order.
/// Care is taken that no data is lost, but this depends on correctly repairing the state and
/// so is only best effort.
///
/// This function might be called after a different function returned the [Error::Corrupted] error.
/// There's no guarantee it will work.
///
/// If this function or the function call after this crate returns [Error::Corrupted], then it's unlikely
/// that the state can be recovered. To at least make everything function again at the cost of losing the data,
/// erase the flash range.
async fn try_repair<K: Key, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl KeyCacheImpl<K>,
data_buffer: &mut [u8],
) -> Result<(), Error<S::Error>> {
cache.invalidate_cache_state();
crate::try_general_repair(flash, flash_range.clone(), cache).await?;
// Let's check if we corrupted in the middle of a migration
if let Some(partial_open_page) =
find_first_page(flash, flash_range.clone(), cache, 0, PageState::PartialOpen).await?
{
let buffer_page = next_page::<S>(flash_range.clone(), partial_open_page);
if !get_page_state(flash, flash_range.clone(), cache, buffer_page)
.await?
.is_open()
{
// Yes, the migration got interrupted. Let's redo it.
// To do that, we erase the partial open page first because it contains incomplete data.
open_page(flash, flash_range.clone(), cache, partial_open_page).await?;
// Then partially close it again
partial_close_page(flash, flash_range.clone(), cache, partial_open_page).await?;
migrate_items::<K, _>(
flash,
flash_range.clone(),
cache,
data_buffer,
buffer_page,
partial_open_page,
)
.await?;
}
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use futures_test::test;
type MockFlashBig = mock_flash::MockFlashBase<4, 4, 256>;
type MockFlashTiny = mock_flash::MockFlashBase<2, 1, 32>;
#[test]
async fn store_and_fetch() {
let mut flash = MockFlashBig::default();
let flash_range = 0x000..0x1000;
let mut data_buffer = AlignedBuf([0; 128]);
let start_snapshot = flash.stats_snapshot();
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
0,
)
.await
.unwrap();
assert_eq!(item, None);
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
60,
)
.await
.unwrap();
assert_eq!(item, None);
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
0xFF,
)
.await
.unwrap();
assert_eq!(item, None);
store_item(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
0u8,
&[5],
)
.await
.unwrap();
store_item(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
0u8,
&[5, 6],
)
.await
.unwrap();
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
0,
)
.await
.unwrap()
.unwrap();
assert_eq!(item, &[5, 6]);
store_item(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
1u8,
&[2, 2, 2, 2, 2, 2],
)
.await
.unwrap();
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
0,
)
.await
.unwrap()
.unwrap();
assert_eq!(item, &[5, 6]);
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
1,
)
.await
.unwrap()
.unwrap();
assert_eq!(item, &[2, 2, 2, 2, 2, 2]);
for index in 0..4000 {
store_item(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
(index % 10) as u8,
&vec![(index % 10) as u8 * 2; index % 10].as_slice(),
)
.await
.unwrap();
}
for i in 0..10 {
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
i,
)
.await
.unwrap()
.unwrap();
assert_eq!(item, &vec![(i % 10) * 2; (i % 10) as usize]);
}
for _ in 0..4000 {
store_item(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
11u8,
&[0; 10],
)
.await
.unwrap();
}
for i in 0..10 {
let item = fetch_item::<u8, &[u8], _>(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer,
i,
)
.await
.unwrap()
.unwrap();
assert_eq!(item, &vec![(i % 10) * 2; (i % 10) as usize]);
}
println!("{:?}", start_snapshot.compare_to(flash.stats_snapshot()),);
}
#[test]
async fn store_too_many_items() {
const UPPER_BOUND: u8 = 3;
let mut tiny_flash = MockFlashTiny::default();
let mut data_buffer = AlignedBuf([0; 128]);
for i in 0..UPPER_BOUND {
println!("Storing {i:?}");
store_item(
&mut tiny_flash,
0x00..0x40,
&mut cache::NoCache::new(),
&mut data_buffer,
i,
&vec![i; i as usize].as_slice(),
)
.await
.unwrap();
}
assert_eq!(
store_item(
&mut tiny_flash,
0x00..0x40,
&mut cache::NoCache::new(),
&mut data_buffer,
UPPER_BOUND,
&vec![0; UPPER_BOUND as usize].as_slice(),
)
.await,
Err(Error::FullStorage)
);
for i in 0..UPPER_BOUND {
let item = fetch_item::<u8, &[u8], _>(
&mut tiny_flash,
0x00..0x40,
&mut cache::NoCache::new(),
&mut data_buffer,
i,
)
.await
.unwrap()
.unwrap();
println!("Fetched {item:?}");
assert_eq!(item, vec![i; i as usize]);
}
}
#[test]
async fn store_too_many_items_big() {
const UPPER_BOUND: u8 = 68;
let mut big_flash = MockFlashBig::default();
let mut data_buffer = AlignedBuf([0; 128]);
for i in 0..UPPER_BOUND {
println!("Storing {i:?}");
store_item(
&mut big_flash,
0x0000..0x1000,
&mut cache::NoCache::new(),
&mut data_buffer,
i,
&vec![i; i as usize].as_slice(),
)
.await
.unwrap();
}
assert_eq!(
store_item(
&mut big_flash,
0x0000..0x1000,
&mut cache::NoCache::new(),
&mut data_buffer,
UPPER_BOUND,
&vec![0; UPPER_BOUND as usize].as_slice(),
)
.await,
Err(Error::FullStorage)
);
for i in 0..UPPER_BOUND {
let item = fetch_item::<u8, &[u8], _>(
&mut big_flash,
0x0000..0x1000,
&mut cache::NoCache::new(),
&mut data_buffer,
i,
)
.await
.unwrap()
.unwrap();
println!("Fetched {item:?}");
assert_eq!(item, vec![i; i as usize]);
}
}
#[test]
async fn store_many_items_big() {
let mut flash = mock_flash::MockFlashBase::<4, 1, 4096>::default();
let mut data_buffer = AlignedBuf([0; 128]);
const LENGHT_PER_KEY: [usize; 24] = [
11, 13, 6, 13, 13, 10, 2, 3, 5, 36, 1, 65, 4, 6, 1, 15, 10, 7, 3, 15, 9, 3, 4, 5,
];
for _ in 0..100 {
for i in 0..24 {
store_item(
&mut flash,
0x0000..0x4000,
&mut cache::NoCache::new(),
&mut data_buffer,
i as u16,
&vec![i as u8; LENGHT_PER_KEY[i]].as_slice(),
)
.await
.unwrap();
}
}
for i in 0..24 {
let item = fetch_item::<u16, &[u8], _>(
&mut flash,
0x0000..0x4000,
&mut cache::NoCache::new(),
&mut data_buffer,
i as u16,
)
.await
.unwrap()
.unwrap();
println!("Fetched {item:?}");
assert_eq!(item, vec![i as u8; LENGHT_PER_KEY[i]]);
}
}
#[test]
async fn remove_items() {
let mut flash = mock_flash::MockFlashBase::<4, 1, 4096>::new(
mock_flash::WriteCountCheck::Twice,
None,
true,
);
let mut data_buffer = AlignedBuf([0; 128]);
const FLASH_RANGE: Range<u32> = 0x0000..0x4000;
// Add some data to flash
for j in 0..10 {
for i in 0..24 {
store_item(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer,
i as u8,
&vec![i as u8; j + 2].as_slice(),
)
.await
.unwrap();
}
}
for j in (0..24).rev() {
// Are all things still in flash that we expect?
for i in 0..=j {
assert!(fetch_item::<u8, &[u8], _>(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer,
i
)
.await
.unwrap()
.is_some());
}
// Remove the item
remove_item::<u8, _>(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer,
j,
)
.await
.unwrap();
// Are all things still in flash that we expect?
for i in 0..j {
assert!(fetch_item::<u8, &[u8], _>(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer,
i
)
.await
.unwrap()
.is_some());
}
assert!(fetch_item::<u8, &[u8], _>(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer,
j
)
.await
.unwrap()
.is_none());
}
}
#[test]
async fn store_too_big_item() {
let mut flash = MockFlashBig::new(mock_flash::WriteCountCheck::Twice, None, true);
const FLASH_RANGE: Range<u32> = 0x000..0x1000;
store_item(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut [0; 1024],
0u8,
&[0; 1024 - 4 * 2 - 8 - 1],
)
.await
.unwrap();
assert_eq!(
store_item(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut [0; 1024],
0u8,
&[0; 1024 - 4 * 2 - 8 - 1 + 1],
)
.await,
Err(Error::ItemTooBig)
);
}
}