1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
//! A queue (fifo) implementation for storing arbitrary data in flash memory.
//!
//! Use [push] to add data to the fifo and use [peek] and [pop] to get the data back.
//!
//! ```rust
//! # use sequential_storage::queue::{push, peek, pop};
//! # use sequential_storage::cache::NoCache;
//! # use mock_flash::MockFlashBase;
//! # use futures::executor::block_on;
//! # type Flash = MockFlashBase<10, 1, 4096>;
//! # mod mock_flash {
//! #   include!("mock_flash.rs");
//! # }
//! #
//! # fn init_flash() -> Flash {
//! #     Flash::new(mock_flash::WriteCountCheck::Twice, None, false)
//! # }
//! #
//! # block_on(async {
//!
//! // Initialize the flash. This can be internal or external
//! let mut flash = init_flash();
//! // These are the flash addresses in which the crate will operate.
//! // The crate will not read, write or erase outside of this range.
//! let flash_range = 0x1000..0x3000;
//! // We need to give the crate a buffer to work with.
//! // It must be big enough to serialize the biggest value of your storage type in.
//! let mut data_buffer = [0; 128];
//!
//! let my_data = [10, 47, 29];
//!
//! // We can push some data to the queue
//! push(&mut flash, flash_range.clone(), NoCache::new(), &my_data, false).await.unwrap();
//!
//! // We can peek at the oldest data
//!
//! assert_eq!(
//!     &peek(&mut flash, flash_range.clone(), NoCache::new(), &mut data_buffer).await.unwrap().unwrap()[..],
//!     &my_data[..]
//! );
//!
//! // With popping we get back the oldest data, but that data is now also removed
//!
//! assert_eq!(
//!     &pop(&mut flash, flash_range.clone(), NoCache::new(), &mut data_buffer).await.unwrap().unwrap()[..],
//!     &my_data[..]
//! );
//!
//! // If we pop again, we find there's no data anymore
//!
//! assert_eq!(
//!     pop(&mut flash, flash_range.clone(), NoCache::new(), &mut data_buffer).await,
//!     Ok(None)
//! );
//! # });
//! ```

use crate::{
    cache::Cache,
    item::{find_next_free_item_spot, is_page_empty, Item, ItemHeader, ItemHeaderIter},
};

use self::cache::{CacheImpl, PageStatesCache};

use super::*;
use embedded_storage_async::nor_flash::MultiwriteNorFlash;

/// Push data into the queue in the given flash memory with the given range.
/// The data can only be taken out with the [pop] function.
///
/// Old data will not be overwritten unless `allow_overwrite_old_data` is true.
/// If it is, then if the queue is full, the oldest data is removed to make space for the new data.
///
/// *Note: If a page is already used and you push more data than the remaining capacity of the page,
/// the entire remaining capacity will go unused because the data is stored on the next page.*
pub async fn push<S: NorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    mut cache: impl CacheImpl,
    data: &[u8],
    allow_overwrite_old_data: bool,
) -> Result<(), Error<S::Error>> {
    assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
    assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);

    assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
    assert!(S::WORD_SIZE <= MAX_WORD_SIZE);

    let cache = cache.inner();

    if cache.is_dirty() {
        cache.invalidate_cache_state();
    }

    // Data must fit in a single page
    if data.len()
        > ItemHeader::available_data_bytes::<S>((S::ERASE_SIZE - S::WORD_SIZE * 2) as u32).unwrap()
            as usize
    {
        cache.unmark_dirty();
        return Err(Error::BufferTooBig);
    }

    let current_page = find_youngest_page(flash, flash_range.clone(), cache).await?;

    let page_data_start_address =
        calculate_page_address::<S>(flash_range.clone(), current_page) + S::WORD_SIZE as u32;
    let page_data_end_address =
        calculate_page_end_address::<S>(flash_range.clone(), current_page) - S::WORD_SIZE as u32;

    partial_close_page(flash, flash_range.clone(), cache, current_page).await?;

    // Find the last item on the page so we know where we need to write

    let mut next_address = find_next_free_item_spot(
        flash,
        flash_range.clone(),
        cache,
        page_data_start_address,
        page_data_end_address,
        data.len() as u32,
    )
    .await?;

    if next_address.is_none() {
        // No cap left on this page, move to the next page
        let next_page = next_page::<S>(flash_range.clone(), current_page);
        match get_page_state(flash, flash_range.clone(), cache, next_page).await? {
            PageState::Open => {
                close_page(flash, flash_range.clone(), cache, current_page).await?;
                partial_close_page(flash, flash_range.clone(), cache, next_page).await?;
                next_address = Some(
                    calculate_page_address::<S>(flash_range.clone(), next_page)
                        + S::WORD_SIZE as u32,
                );
            }
            state @ PageState::Closed => {
                let next_page_data_start_address =
                    calculate_page_address::<S>(flash_range.clone(), next_page)
                        + S::WORD_SIZE as u32;

                if !allow_overwrite_old_data
                    && !is_page_empty(flash, flash_range.clone(), cache, next_page, Some(state))
                        .await?
                {
                    cache.unmark_dirty();
                    return Err(Error::FullStorage);
                }

                open_page(flash, flash_range.clone(), cache, next_page).await?;
                close_page(flash, flash_range.clone(), cache, current_page).await?;
                partial_close_page(flash, flash_range.clone(), cache, next_page).await?;
                next_address = Some(next_page_data_start_address);
            }
            PageState::PartialOpen => {
                // This should never happen
                return Err(Error::Corrupted {
                    #[cfg(feature = "_test")]
                    backtrace: std::backtrace::Backtrace::capture(),
                });
            }
        }
    }

    Item::write_new(
        flash,
        flash_range.clone(),
        cache,
        next_address.unwrap(),
        data,
    )
    .await?;

    cache.unmark_dirty();
    Ok(())
}

/// Peek at the data from oldest to newest.
///
/// If you also want to remove the data use [pop_many].
///
/// Returns an iterator-like type that can be used to peek into the data.
pub async fn peek_many<S: NorFlash, CI: CacheImpl>(
    flash: &mut S,
    flash_range: Range<u32>,
    cache: CI,
) -> Result<PeekIterator<'_, S, CI>, Error<S::Error>> {
    Ok(PeekIterator {
        iter: QueueIterator::new(flash, flash_range, cache).await?,
    })
}

/// Peek at the oldest data.
///
/// If you also want to remove the data use [pop].
///
/// The data is written to the given `data_buffer` and the part that was written is returned.
/// It is valid to only use the length of the returned slice and use the original `data_buffer`.
/// The `data_buffer` may contain extra data on ranges after the returned slice.
/// You should not depend on that data.
///
/// If the data buffer is not big enough an error is returned.
pub async fn peek<'d, S: NorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    cache: impl CacheImpl,
    data_buffer: &'d mut [u8],
) -> Result<Option<&'d mut [u8]>, Error<S::Error>> {
    peek_many(flash, flash_range, cache)
        .await?
        .next(data_buffer)
        .await
}

/// Pop the data from oldest to newest.
///
/// If you don't want to remove the data use [peek_many].
///
/// Returns an iterator-like type that can be used to pop the data.
pub async fn pop_many<S: MultiwriteNorFlash, CI: CacheImpl>(
    flash: &mut S,
    flash_range: Range<u32>,
    cache: CI,
) -> Result<PopIterator<'_, S, CI>, Error<S::Error>> {
    Ok(PopIterator {
        iter: QueueIterator::new(flash, flash_range, cache).await?,
    })
}

/// Pop the oldest data from the queue.
///
/// If you don't want to remove the data use [peek].
///
/// The data is written to the given `data_buffer` and the part that was written is returned.
/// It is valid to only use the length of the returned slice and use the original `data_buffer`.
/// The `data_buffer` may contain extra data on ranges after the returned slice.
/// You should not depend on that data.
///
/// If the data buffer is not big enough an error is returned.
pub async fn pop<'d, S: MultiwriteNorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    cache: impl CacheImpl,
    data_buffer: &'d mut [u8],
) -> Result<Option<&'d mut [u8]>, Error<S::Error>> {
    pop_many(flash, flash_range, cache)
        .await?
        .next(data_buffer)
        .await
}

/// Iterator for pop'ing elements in the queue.
#[derive(Debug)]
pub struct PopIterator<'d, S: MultiwriteNorFlash, CI: CacheImpl> {
    iter: QueueIterator<'d, S, CI>,
}

impl<'d, S: MultiwriteNorFlash, CI: CacheImpl> PopIterator<'d, S, CI> {
    /// Pop the next data.
    ///
    /// The data is written to the given `data_buffer` and the part that was written is returned.
    /// It is valid to only use the length of the returned slice and use the original `data_buffer`.
    /// The `data_buffer` may contain extra data on ranges after the returned slice.
    /// You should not depend on that data.
    ///
    /// If the data buffer is not big enough an error is returned.
    pub async fn next<'m>(
        &mut self,
        data_buffer: &'m mut [u8],
    ) -> Result<Option<&'m mut [u8]>, Error<S::Error>> {
        if self.iter.cache.inner().is_dirty() {
            self.iter.cache.inner().invalidate_cache_state();
        }

        let reset_point = self.iter.create_reset_point();

        if let Some((item, item_address)) = self.iter.next(data_buffer).await? {
            let (header, data_buffer) = item.destruct();
            let ret = &mut data_buffer[..header.length as usize];

            match header
                .erase_data(
                    self.iter.flash,
                    self.iter.flash_range.clone(),
                    self.iter.cache.inner(),
                    item_address,
                )
                .await
            {
                Ok(_) => {
                    self.iter.cache.inner().unmark_dirty();
                    Ok(Some(ret))
                }
                Err(e) => {
                    self.iter.recover_from_reset_point(reset_point);
                    Err(e)
                }
            }
        } else {
            self.iter.cache.inner().unmark_dirty();
            Ok(None)
        }
    }
}

/// Iterator for peek'ing elements in the queue.
#[derive(Debug)]
pub struct PeekIterator<'d, S: NorFlash, CI: CacheImpl> {
    iter: QueueIterator<'d, S, CI>,
}

impl<'d, S: NorFlash, CI: CacheImpl> PeekIterator<'d, S, CI> {
    /// Peek at the next data.
    ///
    /// The data is written to the given `data_buffer` and the part that was written is returned.
    /// It is valid to only use the length of the returned slice and use the original `data_buffer`.
    /// The `data_buffer` may contain extra data on ranges after the returned slice.
    /// You should not depend on that data.
    ///
    /// If the data buffer is not big enough an error is returned.
    pub async fn next<'m>(
        &mut self,
        data_buffer: &'m mut [u8],
    ) -> Result<Option<&'m mut [u8]>, Error<S::Error>> {
        if self.iter.cache.inner().is_dirty() {
            self.iter.cache.inner().invalidate_cache_state();
        }

        Ok(self.iter.next(data_buffer).await?.map(|(item, _)| {
            let (header, data_buffer) = item.destruct();
            &mut data_buffer[..header.length as usize]
        }))
    }
}

/// An iterator-like interface for peeking into data stored in flash.
struct QueueIterator<'d, S: NorFlash, CI: CacheImpl> {
    flash: &'d mut S,
    flash_range: Range<u32>,
    cache: CI,
    current_address: CurrentAddress,
}

impl<'d, S: NorFlash, CI: CacheImpl> Debug for QueueIterator<'d, S, CI> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("QueueIterator")
            .field("current_address", &self.current_address)
            .finish_non_exhaustive()
    }
}

#[derive(Debug, Clone)]
enum CurrentAddress {
    Address(u32),
    PageAfter(usize),
}

impl<'d, S: NorFlash, CI: CacheImpl> QueueIterator<'d, S, CI> {
    async fn new(
        flash: &'d mut S,
        flash_range: Range<u32>,
        mut cache: CI,
    ) -> Result<Self, Error<S::Error>> {
        assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
        assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);

        assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
        assert!(S::WORD_SIZE <= MAX_WORD_SIZE);

        if cache.inner().is_dirty() {
            cache.inner().invalidate_cache_state();
        }

        let oldest_page = find_oldest_page(flash, flash_range.clone(), cache.inner()).await?;

        // We start at the start of the oldest page
        let current_address = match cache.inner().first_item_after_erased(oldest_page) {
            Some(address) => address,
            None => {
                calculate_page_address::<S>(flash_range.clone(), oldest_page) + S::WORD_SIZE as u32
            }
        };

        Ok(Self {
            flash,
            flash_range,
            cache,
            current_address: CurrentAddress::Address(current_address),
        })
    }

    async fn next<'m>(
        &mut self,
        data_buffer: &'m mut [u8],
    ) -> Result<Option<(Item<'m>, u32)>, Error<S::Error>> {
        let mut data_buffer = Some(data_buffer);

        if self.cache.inner().is_dirty() {
            self.cache.inner().invalidate_cache_state();
        }

        loop {
            // Get the current page and address based on what was stored
            let (current_page, current_address) = match self.current_address {
                CurrentAddress::PageAfter(previous_page) => {
                    let next_page = next_page::<S>(self.flash_range.clone(), previous_page);
                    if get_page_state(
                        self.flash,
                        self.flash_range.clone(),
                        self.cache.inner(),
                        next_page,
                    )
                    .await?
                    .is_open()
                        || next_page
                            == find_oldest_page(
                                self.flash,
                                self.flash_range.clone(),
                                self.cache.inner(),
                            )
                            .await?
                    {
                        self.cache.inner().unmark_dirty();
                        return Ok(None);
                    }

                    let current_address =
                        calculate_page_address::<S>(self.flash_range.clone(), next_page)
                            + S::WORD_SIZE as u32;

                    self.current_address = CurrentAddress::Address(current_address);

                    (next_page, current_address)
                }
                CurrentAddress::Address(address) => (
                    calculate_page_index::<S>(self.flash_range.clone(), address),
                    address,
                ),
            };

            let page_data_end_address =
                calculate_page_end_address::<S>(self.flash_range.clone(), current_page)
                    - S::WORD_SIZE as u32;

            // Search for the first item with data
            let mut it = ItemHeaderIter::new(current_address, page_data_end_address);
            // No need to worry about cache here since that has been dealt with at the creation of this iterator
            if let (Some(found_item_header), found_item_address) = it
                .traverse(self.flash, |header, _| header.crc.is_none())
                .await?
            {
                let maybe_item = found_item_header
                    .read_item(
                        self.flash,
                        data_buffer.take().unwrap(),
                        found_item_address,
                        page_data_end_address,
                    )
                    .await?;

                match maybe_item {
                    item::MaybeItem::Corrupted(header, db) => {
                        let next_address = header.next_item_address::<S>(found_item_address);
                        self.current_address = if next_address >= page_data_end_address {
                            CurrentAddress::PageAfter(current_page)
                        } else {
                            CurrentAddress::Address(next_address)
                        };
                        data_buffer.replace(db);
                    }
                    item::MaybeItem::Erased(_, _) => unreachable!("Item is already erased"),
                    item::MaybeItem::Present(item) => {
                        let next_address = item.header.next_item_address::<S>(found_item_address);
                        self.current_address = if next_address >= page_data_end_address {
                            CurrentAddress::PageAfter(current_page)
                        } else {
                            CurrentAddress::Address(next_address)
                        };
                        // Return the item we found
                        self.cache.inner().unmark_dirty();
                        return Ok(Some((item, found_item_address)));
                    }
                }
            } else {
                self.current_address = CurrentAddress::PageAfter(current_page);
            }
        }
    }

    fn create_reset_point(&self) -> QueueIteratorResetPoint {
        QueueIteratorResetPoint(self.current_address.clone())
    }

    fn recover_from_reset_point(&mut self, reset_point: QueueIteratorResetPoint) {
        self.current_address = reset_point.0;
    }
}

struct QueueIteratorResetPoint(CurrentAddress);

/// Find the largest size of data that can be stored.
///
/// This will read through the entire flash to find the largest chunk of
/// data that can be stored, taking alignment requirements of the item into account.
///
/// If there is no space left, `None` is returned.
pub async fn find_max_fit<S: NorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    mut cache: impl CacheImpl,
) -> Result<Option<u32>, Error<S::Error>> {
    assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
    assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);

    assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
    assert!(S::WORD_SIZE <= MAX_WORD_SIZE);

    let cache = cache.inner();

    if cache.is_dirty() {
        cache.invalidate_cache_state();
    }

    let current_page = find_youngest_page(flash, flash_range.clone(), cache).await?;

    // Check if we have space on the next page
    let next_page = next_page::<S>(flash_range.clone(), current_page);
    match get_page_state(flash, flash_range.clone(), cache, next_page).await? {
        state @ PageState::Closed => {
            if is_page_empty(flash, flash_range.clone(), cache, next_page, Some(state)).await? {
                cache.unmark_dirty();
                return Ok(Some((S::ERASE_SIZE - (2 * S::WORD_SIZE)) as u32));
            }
        }
        PageState::Open => {
            cache.unmark_dirty();
            return Ok(Some((S::ERASE_SIZE - (2 * S::WORD_SIZE)) as u32));
        }
        PageState::PartialOpen => {
            // This should never happen
            return Err(Error::Corrupted {
                #[cfg(feature = "_test")]
                backtrace: std::backtrace::Backtrace::capture(),
            });
        }
    };

    // See how much space we can find in the current page.
    let page_data_start_address =
        calculate_page_address::<S>(flash_range.clone(), current_page) + S::WORD_SIZE as u32;
    let page_data_end_address =
        calculate_page_end_address::<S>(flash_range.clone(), current_page) - S::WORD_SIZE as u32;

    let next_item_address = match cache.first_item_after_written(current_page) {
        Some(next_item_address) => next_item_address,
        None => {
            ItemHeaderIter::new(
                cache
                    .first_item_after_erased(current_page)
                    .unwrap_or(page_data_start_address),
                page_data_end_address,
            )
            .traverse(flash, |_, _| true)
            .await?
            .1
        }
    };

    cache.unmark_dirty();
    Ok(ItemHeader::available_data_bytes::<S>(
        page_data_end_address - next_item_address,
    ))
}

async fn find_youngest_page<S: NorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    cache: &mut Cache<impl PageStatesCache, impl PagePointersCache>,
) -> Result<usize, Error<S::Error>> {
    let last_used_page =
        find_first_page(flash, flash_range.clone(), cache, 0, PageState::PartialOpen).await?;

    if let Some(last_used_page) = last_used_page {
        return Ok(last_used_page);
    }

    // We have no partial open page. Search for an open page to start in
    let first_open_page = find_first_page(flash, flash_range, cache, 0, PageState::Open).await?;

    if let Some(first_open_page) = first_open_page {
        return Ok(first_open_page);
    }

    // All pages are closed... This is not correct.
    Err(Error::Corrupted {
        #[cfg(feature = "_test")]
        backtrace: std::backtrace::Backtrace::capture(),
    })
}

async fn find_oldest_page<S: NorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    cache: &mut Cache<impl PageStatesCache, impl PagePointersCache>,
) -> Result<usize, Error<S::Error>> {
    let youngest_page = find_youngest_page(flash, flash_range.clone(), cache).await?;

    // The oldest page is the first non-open page after the youngest page
    let oldest_closed_page =
        find_first_page(flash, flash_range, cache, youngest_page, PageState::Closed).await?;

    Ok(oldest_closed_page.unwrap_or(youngest_page))
}

/// Try to repair the state of the flash to hopefull get back everything in working order.
/// Care is taken that no data is lost, but this depends on correctly repairing the state and
/// so is only best effort.
///
/// This function might be called after a different function returned the [Error::Corrupted] error.
/// There's no guarantee it will work.
///
/// If this function or the function call after this crate returns [Error::Corrupted], then it's unlikely
/// that the state can be recovered. To at least make everything function again at the cost of losing the data,
/// erase the flash range.
pub async fn try_repair<S: NorFlash>(
    flash: &mut S,
    flash_range: Range<u32>,
    mut cache: impl CacheImpl,
) -> Result<(), Error<S::Error>> {
    cache.inner().invalidate_cache_state();
    drop(cache);

    crate::try_general_repair(flash, flash_range.clone()).await?;
    Ok(())
}

#[cfg(test)]
mod tests {
    use crate::cache::PrivateCacheImpl;
    use crate::mock_flash::{FlashAverageStatsResult, FlashStatsResult, WriteCountCheck};

    use super::*;
    use futures_test::test;

    type MockFlashBig = mock_flash::MockFlashBase<4, 4, 256>;
    type MockFlashTiny = mock_flash::MockFlashBase<2, 1, 32>;

    #[test]
    async fn peek_and_overwrite_old_data() {
        let mut flash = MockFlashTiny::new(WriteCountCheck::Twice, None, true);
        let flash_range = 0x00..0x40;
        let mut data_buffer = AlignedBuf([0; 1024]);
        const DATA_SIZE: usize = 22;

        assert_eq!(
            peek(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap(),
            None
        );

        data_buffer[..DATA_SIZE].copy_from_slice(&[0xAA; DATA_SIZE]);
        push(
            &mut flash,
            flash_range.clone(),
            cache::NoCache::new(),
            &data_buffer[..DATA_SIZE],
            false,
        )
        .await
        .unwrap();
        assert_eq!(
            &peek(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xAA; DATA_SIZE]
        );
        data_buffer[..DATA_SIZE].copy_from_slice(&[0xBB; DATA_SIZE]);
        push(
            &mut flash,
            flash_range.clone(),
            cache::NoCache::new(),
            &data_buffer[..DATA_SIZE],
            false,
        )
        .await
        .unwrap();
        assert_eq!(
            &peek(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xAA; DATA_SIZE]
        );

        // Flash is full, this should fail
        data_buffer[..DATA_SIZE].copy_from_slice(&[0xCC; DATA_SIZE]);
        push(
            &mut flash,
            flash_range.clone(),
            cache::NoCache::new(),
            &data_buffer[..DATA_SIZE],
            false,
        )
        .await
        .unwrap_err();
        // Now we allow overwrite, so it should work
        data_buffer[..DATA_SIZE].copy_from_slice(&[0xDD; DATA_SIZE]);
        push(
            &mut flash,
            flash_range.clone(),
            cache::NoCache::new(),
            &data_buffer[..DATA_SIZE],
            true,
        )
        .await
        .unwrap();

        assert_eq!(
            &peek(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xBB; DATA_SIZE]
        );
        assert_eq!(
            &pop(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xBB; DATA_SIZE]
        );

        assert_eq!(
            &peek(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xDD; DATA_SIZE]
        );
        assert_eq!(
            &pop(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xDD; DATA_SIZE]
        );

        assert_eq!(
            peek(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap(),
            None
        );
        assert_eq!(
            pop(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap(),
            None
        );
    }

    #[test]
    async fn push_pop() {
        let mut flash = MockFlashBig::new(WriteCountCheck::Twice, None, true);
        let flash_range = 0x000..0x1000;
        let mut data_buffer = AlignedBuf([0; 1024]);

        for i in 0..2000 {
            println!("{i}");
            let data = vec![i as u8; i % 512 + 1];

            push(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &data,
                true,
            )
            .await
            .unwrap();
            assert_eq!(
                &peek(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &mut data_buffer
                )
                .await
                .unwrap()
                .unwrap()[..],
                &data,
                "At {i}"
            );
            assert_eq!(
                &pop(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &mut data_buffer
                )
                .await
                .unwrap()
                .unwrap()[..],
                &data,
                "At {i}"
            );
            assert_eq!(
                peek(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &mut data_buffer
                )
                .await
                .unwrap(),
                None,
                "At {i}"
            );
        }
    }

    #[test]
    async fn push_pop_tiny() {
        let mut flash = MockFlashTiny::new(WriteCountCheck::Twice, None, true);
        let flash_range = 0x00..0x40;
        let mut data_buffer = AlignedBuf([0; 1024]);

        for i in 0..2000 {
            println!("{i}");
            let data = vec![i as u8; i % 20 + 1];

            println!("PUSH");
            push(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &data,
                true,
            )
            .await
            .unwrap();
            assert_eq!(
                &peek(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &mut data_buffer
                )
                .await
                .unwrap()
                .unwrap()[..],
                &data,
                "At {i}"
            );
            println!("POP");
            assert_eq!(
                &pop(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &mut data_buffer
                )
                .await
                .unwrap()
                .unwrap()[..],
                &data,
                "At {i}"
            );
            println!("PEEK");
            assert_eq!(
                peek(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &mut data_buffer
                )
                .await
                .unwrap(),
                None,
                "At {i}"
            );
            println!("DONE");
        }
    }

    #[test]
    /// Same as [push_lots_then_pop_lots], except with added peeking and using the iterator style
    async fn push_peek_pop_many() {
        let mut flash = MockFlashBig::new(WriteCountCheck::Twice, None, true);
        let flash_range = 0x000..0x1000;
        let mut data_buffer = AlignedBuf([0; 1024]);

        let mut push_stats = FlashStatsResult::default();
        let mut pushes = 0;
        let mut peek_stats = FlashStatsResult::default();
        let mut peeks = 0;
        let mut pop_stats = FlashStatsResult::default();
        let mut pops = 0;

        let mut cache = cache::NoCache::new();

        for loop_index in 0..100 {
            println!("Loop index: {loop_index}");

            for i in 0..20 {
                let start_snapshot = flash.stats_snapshot();
                let data = vec![i as u8; 50];
                push(&mut flash, flash_range.clone(), &mut cache, &data, false)
                    .await
                    .unwrap();
                pushes += 1;
                push_stats += start_snapshot.compare_to(flash.stats_snapshot());
            }

            let start_snapshot = flash.stats_snapshot();
            let mut peeker = peek_many(&mut flash, flash_range.clone(), &mut cache)
                .await
                .unwrap();
            peek_stats += start_snapshot.compare_to(peeker.iter.flash.stats_snapshot());
            for i in 0..5 {
                let start_snapshot = peeker.iter.flash.stats_snapshot();
                let mut data = vec![i as u8; 50];
                assert_eq!(
                    peeker.next(&mut data_buffer).await.unwrap(),
                    Some(&mut data[..]),
                    "At {i}"
                );
                peeks += 1;
                peek_stats += start_snapshot.compare_to(peeker.iter.flash.stats_snapshot());
            }

            let start_snapshot = flash.stats_snapshot();
            let mut popper = pop_many(&mut flash, flash_range.clone(), &mut cache)
                .await
                .unwrap();
            pop_stats += start_snapshot.compare_to(popper.iter.flash.stats_snapshot());
            for i in 0..5 {
                let start_snapshot = popper.iter.flash.stats_snapshot();
                let data = vec![i as u8; 50];
                assert_eq!(
                    &popper.next(&mut data_buffer).await.unwrap().unwrap()[..],
                    &data,
                    "At {i}"
                );
                pops += 1;
                pop_stats += start_snapshot.compare_to(popper.iter.flash.stats_snapshot());
            }

            for i in 20..25 {
                let start_snapshot = flash.stats_snapshot();
                let data = vec![i as u8; 50];
                push(&mut flash, flash_range.clone(), &mut cache, &data, false)
                    .await
                    .unwrap();
                pushes += 1;
                push_stats += start_snapshot.compare_to(flash.stats_snapshot());
            }

            let start_snapshot = flash.stats_snapshot();
            let mut peeker = peek_many(&mut flash, flash_range.clone(), &mut cache)
                .await
                .unwrap();
            peek_stats += start_snapshot.compare_to(peeker.iter.flash.stats_snapshot());
            for i in 5..25 {
                let start_snapshot = peeker.iter.flash.stats_snapshot();
                let data = vec![i as u8; 50];
                assert_eq!(
                    &peeker.next(&mut data_buffer).await.unwrap().unwrap()[..],
                    &data,
                    "At {i}"
                );
                peeks += 1;
                peek_stats += start_snapshot.compare_to(peeker.iter.flash.stats_snapshot());
            }

            let start_snapshot = flash.stats_snapshot();
            let mut popper = pop_many(&mut flash, flash_range.clone(), &mut cache)
                .await
                .unwrap();
            pop_stats += start_snapshot.compare_to(popper.iter.flash.stats_snapshot());
            for i in 5..25 {
                let start_snapshot = popper.iter.flash.stats_snapshot();
                let data = vec![i as u8; 50];
                assert_eq!(
                    &popper.next(&mut data_buffer).await.unwrap().unwrap()[..],
                    &data,
                    "At {i}"
                );
                pops += 1;
                pop_stats += start_snapshot.compare_to(popper.iter.flash.stats_snapshot());
            }
        }

        // Assert the performance. These numbers can be changed if acceptable.
        approx::assert_relative_eq!(
            push_stats.take_average(pushes),
            FlashAverageStatsResult {
                avg_erases: 0.0612,
                avg_reads: 17.902,
                avg_writes: 3.1252,
                avg_bytes_read: 113.7248,
                avg_bytes_written: 60.5008
            }
        );
        approx::assert_relative_eq!(
            peek_stats.take_average(peeks),
            FlashAverageStatsResult {
                avg_erases: 0.0,
                avg_reads: 8.0188,
                avg_writes: 0.0,
                avg_bytes_read: 96.4224,
                avg_bytes_written: 0.0
            }
        );
        approx::assert_relative_eq!(
            pop_stats.take_average(pops),
            FlashAverageStatsResult {
                avg_erases: 0.0,
                avg_reads: 8.0188,
                avg_writes: 1.0,
                avg_bytes_read: 96.4224,
                avg_bytes_written: 8.0
            }
        );
    }

    #[test]
    async fn push_lots_then_pop_lots() {
        let mut flash = MockFlashBig::new(WriteCountCheck::Twice, None, true);
        let flash_range = 0x000..0x1000;
        let mut data_buffer = AlignedBuf([0; 1024]);

        let mut push_stats = FlashStatsResult::default();
        let mut pushes = 0;
        let mut pop_stats = FlashStatsResult::default();
        let mut pops = 0;

        for loop_index in 0..100 {
            println!("Loop index: {loop_index}");

            for i in 0..20 {
                let start_snapshot = flash.stats_snapshot();
                let data = vec![i as u8; 50];
                push(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &data,
                    false,
                )
                .await
                .unwrap();
                pushes += 1;
                push_stats += start_snapshot.compare_to(flash.stats_snapshot());
            }

            for i in 0..5 {
                let start_snapshot = flash.stats_snapshot();
                let data = vec![i as u8; 50];
                assert_eq!(
                    &pop(
                        &mut flash,
                        flash_range.clone(),
                        cache::NoCache::new(),
                        &mut data_buffer
                    )
                    .await
                    .unwrap()
                    .unwrap()[..],
                    &data,
                    "At {i}"
                );
                pops += 1;
                pop_stats += start_snapshot.compare_to(flash.stats_snapshot());
            }

            for i in 20..25 {
                let start_snapshot = flash.stats_snapshot();
                let data = vec![i as u8; 50];
                push(
                    &mut flash,
                    flash_range.clone(),
                    cache::NoCache::new(),
                    &data,
                    false,
                )
                .await
                .unwrap();
                pushes += 1;
                push_stats += start_snapshot.compare_to(flash.stats_snapshot());
            }

            for i in 5..25 {
                let start_snapshot = flash.stats_snapshot();
                let data = vec![i as u8; 50];
                assert_eq!(
                    &pop(
                        &mut flash,
                        flash_range.clone(),
                        cache::NoCache::new(),
                        &mut data_buffer
                    )
                    .await
                    .unwrap()
                    .unwrap()[..],
                    &data,
                    "At {i}"
                );
                pops += 1;
                pop_stats += start_snapshot.compare_to(flash.stats_snapshot());
            }
        }

        // Assert the performance. These numbers can be changed if acceptable.
        approx::assert_relative_eq!(
            push_stats.take_average(pushes),
            FlashAverageStatsResult {
                avg_erases: 0.0612,
                avg_reads: 17.902,
                avg_writes: 3.1252,
                avg_bytes_read: 113.7248,
                avg_bytes_written: 60.5008
            }
        );
        approx::assert_relative_eq!(
            pop_stats.take_average(pops),
            FlashAverageStatsResult {
                avg_erases: 0.0,
                avg_reads: 82.618,
                avg_writes: 1.0,
                avg_bytes_read: 567.9904,
                avg_bytes_written: 8.0
            }
        );
    }

    #[test]
    async fn pop_with_empty_section() {
        let mut flash = MockFlashTiny::new(WriteCountCheck::Twice, None, true);
        let flash_range = 0x00..0x40;
        let mut data_buffer = AlignedBuf([0; 1024]);

        data_buffer[..20].copy_from_slice(&[0xAA; 20]);
        push(
            &mut flash,
            flash_range.clone(),
            cache::NoCache::new(),
            &data_buffer[0..20],
            false,
        )
        .await
        .unwrap();
        data_buffer[..20].copy_from_slice(&[0xBB; 20]);
        push(
            &mut flash,
            flash_range.clone(),
            cache::NoCache::new(),
            &data_buffer[0..20],
            false,
        )
        .await
        .unwrap();

        // There's now an unused gap at the end of the first page

        assert_eq!(
            &pop(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xAA; 20]
        );

        assert_eq!(
            &pop(
                &mut flash,
                flash_range.clone(),
                cache::NoCache::new(),
                &mut data_buffer
            )
            .await
            .unwrap()
            .unwrap()[..],
            &[0xBB; 20]
        );
    }

    #[test]
    async fn search_pages() {
        let mut flash = MockFlashBig::new(WriteCountCheck::Twice, None, true);

        const FLASH_RANGE: Range<u32> = 0x000..0x1000;

        close_page(&mut flash, FLASH_RANGE, cache::NoCache::new().inner(), 0)
            .await
            .unwrap();
        close_page(&mut flash, FLASH_RANGE, cache::NoCache::new().inner(), 1)
            .await
            .unwrap();
        partial_close_page(&mut flash, FLASH_RANGE, cache::NoCache::new().inner(), 2)
            .await
            .unwrap();

        assert_eq!(
            find_youngest_page(&mut flash, FLASH_RANGE, cache::NoCache::new().inner())
                .await
                .unwrap(),
            2
        );
        assert_eq!(
            find_oldest_page(&mut flash, FLASH_RANGE, cache::NoCache::new().inner())
                .await
                .unwrap(),
            0
        );
    }
}