1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
//! A module for storing key-value pairs in flash with minimal erase cycles.
//!
//! When a key-value is stored, it overwrites the any old items with the same key.
//!
//! Make sure to use the same [StorageItem] type on a given range in flash.
//! In theory you could use multiple types if you're careful, but they must at least have the same key definition and format.
//!
//! ## Basic API:
//!
//! ```rust
//! # use sequential_storage::map::{store_item, fetch_item, StorageItem};
//! # use mock_flash::MockFlashBase;
//! # type Flash = MockFlashBase<10, 1, 4096>;
//! # mod mock_flash {
//! # include!("mock_flash.rs");
//! # }
//! // We create the type we want to store in this part of flash.
//! // It itself must contain the key and the value.
//! // On this part of flash, we must only call the functions using this type.
//! // If you start to mix, bad things will happen.
//!
//! #[derive(Debug, PartialEq)]
//! struct MyCustomType {
//! key: u8,
//! data: u32,
//! }
//!
//! // We implement StorageItem for our type. This lets the crate
//! // know how to serialize and deserialize the data and get its key for comparison.
//!
//! impl StorageItem for MyCustomType {
//! type Key = u8;
//! type Error = Error;
//!
//! fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, Self::Error> {
//! if buffer.len() < 5 {
//! return Err(Error::BufferTooSmall);
//! }
//!
//! buffer[0] = self.key;
//! buffer[1..5].copy_from_slice(&self.data.to_le_bytes());
//!
//! Ok(5)
//! }
//! fn deserialize_from(buffer: &[u8]) -> Result<Self, Self::Error> {
//! if buffer.len() < 5 {
//! return Err(Error::BufferTooSmall);
//! }
//!
//! Ok(Self {
//! key: buffer[0],
//! data: u32::from_le_bytes(buffer[1..5].try_into().unwrap()),
//! })
//! }
//! fn key(&self) -> Self::Key { self.key }
//! }
//!
//! // We never tell the crate the max length of our type.
//! // Instead we need to tell the crate when the provided buffer is too small.
//! // That's done with the StorageItemError trait which needs to be implemented by the error type.
//!
//! #[derive(Debug)]
//! enum Error {
//! BufferTooSmall,
//! }
//!
//! // Initialize the flash. This can be internal or external
//! let mut flash = Flash::default();
//! // These are the flash addresses in which the crate will operate.
//! // The crate will not read, write or erase outside of this range.
//! let flash_range = 0x1000..0x3000;
//! // We need to give the crate a buffer to work with.
//! // It must be big enough to serialize the biggest value of your storage type in.
//! let mut data_buffer = [0; 100];
//!
//! // We can fetch an item from the flash.
//! // Nothing is stored in it yet, so it will return None.
//!
//! assert_eq!(
//! fetch_item::<MyCustomType, _>(
//! &mut flash,
//! flash_range.clone(),
//! &mut data_buffer,
//! 42,
//! ).unwrap(),
//! None
//! );
//!
//! // Now we store an item the flash with key 42
//!
//! store_item::<MyCustomType, _>(
//! &mut flash,
//! flash_range.clone(),
//! &mut data_buffer,
//! MyCustomType { key: 42, data: 104729 },
//! ).unwrap();
//!
//! // When we ask for key 42, we not get back a Some with the correct value
//!
//! assert_eq!(
//! fetch_item::<MyCustomType, _>(
//! &mut flash,
//! flash_range.clone(),
//! &mut data_buffer,
//! 42,
//! ).unwrap(),
//! Some(MyCustomType { key: 42, data: 104729 })
//! );
//! ```
use core::ops::ControlFlow;
use crate::item::{find_next_free_item_spot, read_items, Item, ItemHeader};
use super::*;
/// Get a storage item from the flash.
/// Only the last stored item of the given key is returned.
///
/// If no value with the key is found, None is returned.
///
/// The data buffer must be long enough to hold the longest serialized data of your [StorageItem] type.
///
/// *Note: On a given flash range, make sure to use only the same type as [StorageItem] every time
/// or types that serialize and deserialize the key in the same way.*
pub fn fetch_item<I: StorageItem, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
data_buffer: &mut [u8],
search_key: I::Key,
) -> Result<Option<I>, MapError<I::Error, S::Error>> {
Ok(
fetch_item_with_location(flash, flash_range, data_buffer, search_key)?
.map(|(item, _, _)| item),
)
}
/// Fetch the item, but with the address and header
#[allow(clippy::type_complexity)]
fn fetch_item_with_location<I: StorageItem, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
data_buffer: &mut [u8],
search_key: I::Key,
) -> Result<Option<(I, u32, ItemHeader)>, MapError<I::Error, S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(flash_range.end - flash_range.start >= S::ERASE_SIZE as u32 * 2);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 3);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
// We need to find the page we were last using. This should be the only partial open page.
let mut last_used_page =
find_first_page(flash, flash_range.clone(), 0, PageState::PartialOpen)?;
#[cfg(feature = "defmt")]
defmt::trace!("Fetch item, last used page: {}", last_used_page);
if last_used_page.is_none() {
// In the event that all pages are still open or the last used page was just closed, we search for the first open page.
// If the page one before that is closed, then that's the last used page.
if let Some(first_open_page) =
find_first_page(flash, flash_range.clone(), 0, PageState::Open)?
{
let previous_page = previous_page::<S>(flash_range.clone(), first_open_page);
if get_page_state(flash, flash_range.clone(), previous_page)?.is_closed() {
last_used_page = Some(previous_page);
} else {
// The page before the open page is not closed, so it must be open.
// This means that all pages are open and that we don't have any items yet.
return Ok(None);
}
} else {
// There are no open pages, so everything must be closed.
// Something is up and this should never happen.
// To recover, we will just erase all the flash.
return Err(MapError::Corrupted);
}
}
// We must now find the most recent storage item with the key that was asked for.
// If we don't find it in the current page, then we check again in the previous page if that page is closed.
let mut current_page_to_check = last_used_page.unwrap();
let mut newest_found_item = None;
loop {
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), current_page_to_check)
+ S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), current_page_to_check)
- S::WORD_SIZE as u32;
if let Some(e) = read_items(
flash,
page_data_start_address,
page_data_end_address,
data_buffer,
|_, item, address| {
if I::deserialize_key_only(item.data())
.map_err(MapError::Item)
.to_controlflow()?
== search_key
{
newest_found_item = Some((
I::deserialize_from(item.data())
.map_err(MapError::Item)
.to_controlflow()?,
address,
item.header,
));
}
ControlFlow::<MapError<_, S::Error>, ()>::Continue(())
},
)? {
return Err(e);
}
// We've found the item! We can stop searching
if newest_found_item.is_some() {
break;
}
// We have not found the item. We've got to look in the previous page, but only if that page is closed and contains data.
let previous_page = previous_page::<S>(flash_range.clone(), current_page_to_check);
if get_page_state(flash, flash_range.clone(), previous_page)? != PageState::Closed {
// We've looked through all the pages with data and couldn't find the item
return Ok(None);
}
current_page_to_check = previous_page;
}
Ok(newest_found_item)
}
/// Store an item into flash memory.
/// It will overwrite the last value that has the same key.
/// The flash needs to be at least 2 pages long.
///
/// The data buffer must be long enough to hold the longest serialized data of your [StorageItem] type.
///
/// *Note: On a given flash range, make sure to use only the same type as [StorageItem] every time
/// or types that serialize and deserialize the key in the same way.*
pub fn store_item<I: StorageItem, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
data_buffer: &mut [u8],
item: I,
) -> Result<(), MapError<I::Error, S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(flash_range.len() / S::ERASE_SIZE >= 2);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 3);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
return store_item_inner::<I, S>(flash, flash_range, data_buffer, item, 0);
fn store_item_inner<I: StorageItem, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
data_buffer: &mut [u8],
item: I,
recursion_level: usize,
) -> Result<(), MapError<I::Error, S::Error>> {
#[cfg(feature = "defmt")]
defmt::trace!("Store item inner. Recursion: {}", recursion_level);
// Check if we're in an infinite recursion which happens when
if recursion_level == get_pages::<S>(flash_range.clone(), 0).count() {
return Err(MapError::FullStorage);
}
let mut next_page_to_use = None;
// If there is a partial open page, we try to write in that first if there is enough space
if let Some(partial_open_page) =
find_first_page(flash, flash_range.clone(), 0, PageState::PartialOpen)?
{
#[cfg(feature = "defmt")]
defmt::trace!("Partial open page found: {}", partial_open_page);
// We've got to search where the free space is since the page starts with items present already
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), partial_open_page)
+ S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), partial_open_page)
- S::WORD_SIZE as u32;
let item_data_length = item.serialize_into(data_buffer).map_err(MapError::Item)?;
let free_spot_address = find_next_free_item_spot(
flash,
page_data_start_address,
page_data_end_address,
item_data_length as u32,
)?;
match free_spot_address {
Some(free_spot_address) => {
Item::write_new(flash, free_spot_address, &data_buffer[..item_data_length])?;
#[cfg(feature = "defmt")]
defmt::trace!("Item has been written ok");
return Ok(());
}
None => {
#[cfg(feature = "defmt")]
defmt::trace!(
"Partial open page is too small. Closing it now: {}",
partial_open_page
);
// The item doesn't fit here, so we need to close this page and move to the next
close_page(flash, flash_range.clone(), partial_open_page)?;
next_page_to_use = Some(next_page::<S>(flash_range.clone(), partial_open_page));
}
}
}
// If we get here, there was no partial page found or the partial page has now been closed because the item didn't fit.
// If there was a partial page, then we need to look at the next page. It's supposed to be open since it was the previous empty buffer page.
// The new buffer page has to be emptied if it was closed.
// If there was no partial page, we just use the first open page.
#[cfg(feature = "defmt")]
defmt::trace!("Next page to use: {}", next_page_to_use);
match next_page_to_use {
Some(next_page_to_use) => {
let next_page_state = get_page_state(flash, flash_range.clone(), next_page_to_use)?;
if !next_page_state.is_open() {
// What was the previous buffer page was not open...
return Err(MapError::Corrupted);
}
let next_buffer_page = next_page::<S>(flash_range.clone(), next_page_to_use);
let next_buffer_page_state =
get_page_state(flash, flash_range.clone(), next_buffer_page)?;
if !next_buffer_page_state.is_open() {
// We need to move the data from the next buffer page to the next_page_to_use, but only if that data
// doesn't have a newer value somewhere else.
let mut next_page_write_address =
calculate_page_address::<S>(flash_range.clone(), next_page_to_use)
+ S::WORD_SIZE as u32;
if let Some(e) = read_items(
flash,
calculate_page_address::<S>(flash_range.clone(), next_buffer_page)
+ S::WORD_SIZE as u32,
calculate_page_end_address::<S>(flash_range.clone(), next_buffer_page)
- S::WORD_SIZE as u32,
data_buffer,
|flash, item, item_address| {
let key = I::deserialize_key_only(item.data())
.map_err(MapError::Item)
.to_controlflow()?;
let (item_header, data_buffer) = item.destruct();
// Search for the newest item with the key we found
let Some((_, found_address, _)) = fetch_item_with_location::<I, S>(
flash,
flash_range.clone(),
data_buffer,
key,
)
.to_controlflow()?
else {
// We couldn't even find our own item?
return ControlFlow::Break(MapError::Corrupted);
};
if found_address == item_address {
// The newest item with this key is the item we're about to erase
// This means we need to copy it over to the next_page_to_use
let item = item_header
.read_item(flash, data_buffer, item_address, u32::MAX)
.to_controlflow()?
.unwrap()
.to_controlflow()?;
item.write(flash, next_page_write_address)
.to_controlflow()?;
next_page_write_address =
item.header.next_item_address::<S>(next_page_write_address);
}
ControlFlow::<MapError<_, S::Error>, ()>::Continue(())
},
)? {
return Err(e);
}
flash
.erase(
calculate_page_address::<S>(flash_range.clone(), next_buffer_page),
calculate_page_end_address::<S>(flash_range.clone(), next_buffer_page),
)
.map_err(MapError::Storage)?;
}
partial_close_page(flash, flash_range.clone(), next_page_to_use)?;
}
None => {
// There's no partial open page, so we just gotta turn the first open page into a partial open one
let first_open_page =
match find_first_page(flash, flash_range.clone(), 0, PageState::Open)? {
Some(first_open_page) => first_open_page,
None => {
#[cfg(feature = "defmt")]
defmt::error!(
"No open pages found for sequential storage in the range: {}",
flash_range
);
// Uh oh, no open pages.
// Something has gone wrong.
// We should never get here.
return Err(MapError::Corrupted);
}
};
partial_close_page(flash, flash_range.clone(), first_open_page)?;
}
}
// If we get here, we just freshly partially closed a new page, so this should succeed
store_item_inner::<I, S>(flash, flash_range, data_buffer, item, recursion_level + 1)
}
}
/// A way of serializing and deserializing items in the storage.
///
/// Serialized items must not be 0 bytes and may not be longer than [u16::MAX].
/// Items must also fit within a page (together with the bits of overhead added in the storage process).
pub trait StorageItem {
/// The key type of the key-value pair
type Key: Eq;
/// The error type for serialization and deserialization
type Error;
/// Serialize the key-value item into the given buffer.
/// Returns the number of bytes the buffer was filled with or an error.
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, Self::Error>;
/// Deserialize the key-value item from the given buffer.
fn deserialize_from(buffer: &[u8]) -> Result<Self, Self::Error>
where
Self: Sized;
/// Optimization for deserializing the key only. Can give a small performance boost if
/// your key is easily extractable from the buffer.
fn deserialize_key_only(buffer: &[u8]) -> Result<Self::Key, Self::Error>
where
Self: Sized,
{
// This works for any impl, but could be overridden by the user
Ok(Self::deserialize_from(buffer)?.key())
}
/// The key of the key-value item. It is used by the storage to know what the key of this item is.
fn key(&self) -> Self::Key;
}
/// The error type for map operations
#[non_exhaustive]
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum MapError<I, S> {
/// A storage item error
Item(I),
/// An error in the storage (flash)
Storage(S),
/// The item cannot be stored anymore because the storage is full.
/// If you get this error some data may be lost.
FullStorage,
/// It's been detected that the memory is likely corrupted.
/// You may want to erase the memory to recover.
Corrupted,
/// A provided buffer was to big to be used
BufferTooBig,
/// A provided buffer was to small to be used (usize is size needed)
BufferTooSmall(usize),
}
impl<S, I> From<super::Error<S>> for MapError<I, S> {
fn from(value: super::Error<S>) -> Self {
match value {
Error::Storage(e) => Self::Storage(e),
Error::FullStorage => Self::FullStorage,
Error::Corrupted => Self::Corrupted,
Error::BufferTooBig => Self::BufferTooBig,
Error::BufferTooSmall(needed) => Self::BufferTooSmall(needed),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
type MockFlashBig = mock_flash::MockFlashBase<4, 4, 256>;
type MockFlashTiny = mock_flash::MockFlashBase<2, 1, 32>;
#[derive(Debug, PartialEq, Eq)]
struct MockStorageItem {
key: u8,
value: Vec<u8>,
}
#[derive(Debug, PartialEq, Eq)]
enum MockStorageItemError {
BufferTooSmall,
InvalidKey,
BufferTooBig,
}
impl StorageItem for MockStorageItem {
type Key = u8;
type Error = MockStorageItemError;
fn serialize_into(&self, buffer: &mut [u8]) -> Result<usize, Self::Error> {
if buffer.len() < 2 + self.value.len() {
return Err(MockStorageItemError::BufferTooSmall);
}
if self.value.len() > 255 {
return Err(MockStorageItemError::BufferTooBig);
}
// The serialized value must not be all 0xFF
if self.key == 0xFF {
return Err(MockStorageItemError::InvalidKey);
}
buffer[0] = self.key;
buffer[1] = self.value.len() as u8;
buffer[2..][..self.value.len()].copy_from_slice(&self.value);
Ok(2 + self.value.len())
}
fn deserialize_from(buffer: &[u8]) -> Result<Self, Self::Error>
where
Self: Sized,
{
if buffer.len() < 2 {
return Err(MockStorageItemError::BufferTooSmall);
}
if buffer[0] == 0xFF {
return Err(MockStorageItemError::InvalidKey);
}
let len = buffer[1];
if buffer.len() < 2 + len as usize {
return Err(MockStorageItemError::BufferTooSmall);
}
Ok(Self {
key: buffer[0],
value: buffer[2..][..len as usize].to_vec(),
})
}
fn key(&self) -> Self::Key {
self.key
}
}
#[test]
fn store_and_fetch() {
let mut flash = MockFlashBig::default();
let flash_range = 0x000..0x1000;
let mut data_buffer = [0; 128];
let item =
fetch_item::<MockStorageItem, _>(&mut flash, flash_range.clone(), &mut data_buffer, 0)
.unwrap();
assert_eq!(item, None);
let item =
fetch_item::<MockStorageItem, _>(&mut flash, flash_range.clone(), &mut data_buffer, 60)
.unwrap();
assert_eq!(item, None);
let item = fetch_item::<MockStorageItem, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
0xFF,
)
.unwrap();
assert_eq!(item, None);
store_item::<_, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
MockStorageItem {
key: 0,
value: vec![5],
},
)
.unwrap();
store_item::<_, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
MockStorageItem {
key: 0,
value: vec![5, 6],
},
)
.unwrap();
let item =
fetch_item::<MockStorageItem, _>(&mut flash, flash_range.clone(), &mut data_buffer, 0)
.unwrap()
.unwrap();
assert_eq!(item.key, 0);
assert_eq!(item.value, vec![5, 6]);
store_item::<_, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
MockStorageItem {
key: 1,
value: vec![2, 2, 2, 2, 2, 2],
},
)
.unwrap();
let item =
fetch_item::<MockStorageItem, _>(&mut flash, flash_range.clone(), &mut data_buffer, 0)
.unwrap()
.unwrap();
assert_eq!(item.key, 0);
assert_eq!(item.value, vec![5, 6]);
let item =
fetch_item::<MockStorageItem, _>(&mut flash, flash_range.clone(), &mut data_buffer, 1)
.unwrap()
.unwrap();
assert_eq!(item.key, 1);
assert_eq!(item.value, vec![2, 2, 2, 2, 2, 2]);
for index in 0..4000 {
store_item::<_, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
MockStorageItem {
key: (index % 10) as u8,
value: vec![(index % 10) as u8 * 2; index % 10],
},
)
.unwrap();
}
for i in 0..10 {
let item = fetch_item::<MockStorageItem, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
i,
)
.unwrap()
.unwrap();
assert_eq!(item.key, i);
assert_eq!(item.value, vec![(i % 10) as u8 * 2; (i % 10) as usize]);
}
for _ in 0..4000 {
store_item::<_, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
MockStorageItem {
key: 11,
value: vec![0; 10],
},
)
.unwrap();
}
for i in 0..10 {
let item = fetch_item::<MockStorageItem, _>(
&mut flash,
flash_range.clone(),
&mut data_buffer,
i,
)
.unwrap()
.unwrap();
assert_eq!(item.key, i);
assert_eq!(item.value, vec![(i % 10) as u8 * 2; (i % 10) as usize]);
}
println!(
"Erases: {}, reads: {}, writes: {}",
flash.erases, flash.reads, flash.writes
);
}
#[test]
fn store_too_many_items() {
const UPPER_BOUND: u8 = 3;
let mut tiny_flash = MockFlashTiny::default();
let mut data_buffer = [0; 128];
for i in 0..UPPER_BOUND {
let item = MockStorageItem {
key: i as u8,
value: vec![i as u8; i as usize],
};
println!("Storing {item:?}");
store_item::<_, _>(&mut tiny_flash, 0x00..0x40, &mut data_buffer, item).unwrap();
}
assert_eq!(
store_item::<_, _>(
&mut tiny_flash,
0x00..0x40,
&mut data_buffer,
MockStorageItem {
key: UPPER_BOUND,
value: vec![0; UPPER_BOUND as usize],
},
),
Err(MapError::FullStorage)
);
for i in 0..UPPER_BOUND {
let item = fetch_item::<MockStorageItem, _>(
&mut tiny_flash,
0x00..0x40,
&mut data_buffer,
i as u8,
)
.unwrap()
.unwrap();
println!("Fetched {item:?}");
assert_eq!(item.value, vec![i as u8; i as usize]);
}
}
#[test]
fn store_too_many_items_big() {
const UPPER_BOUND: u8 = 67;
let mut big_flash = MockFlashBig::default();
let mut data_buffer = [0; 128];
for i in 0..UPPER_BOUND {
let item = MockStorageItem {
key: i as u8,
value: vec![i as u8; i as usize],
};
println!("Storing {item:?}");
store_item::<_, _>(&mut big_flash, 0x0000..0x1000, &mut data_buffer, item).unwrap();
}
assert_eq!(
store_item::<_, _>(
&mut big_flash,
0x0000..0x1000,
&mut data_buffer,
MockStorageItem {
key: UPPER_BOUND,
value: vec![0; UPPER_BOUND as usize],
},
),
Err(MapError::FullStorage)
);
for i in 0..UPPER_BOUND {
let item = fetch_item::<MockStorageItem, _>(
&mut big_flash,
0x0000..0x1000,
&mut data_buffer,
i as u8,
)
.unwrap()
.unwrap();
println!("Fetched {item:?}");
assert_eq!(item.value, vec![i as u8; i as usize]);
}
}
#[test]
fn store_many_items_big() {
let mut flash = mock_flash::MockFlashBase::<4, 1, 4096>::default();
let mut data_buffer = [0; 128];
const LENGHT_PER_KEY: [usize; 24] = [
11, 13, 6, 13, 13, 10, 2, 3, 5, 36, 1, 65, 4, 6, 1, 15, 10, 7, 3, 15, 9, 3, 4, 5,
];
for _ in 0..1000 {
for i in 0..24 {
let item = MockStorageItem {
key: i as u8,
value: vec![i as u8; LENGHT_PER_KEY[i]],
};
store_item::<_, _>(&mut flash, 0x0000..0x4000, &mut data_buffer, item).unwrap();
}
}
for i in 0..24 {
let item = fetch_item::<MockStorageItem, _>(
&mut flash,
0x0000..0x4000,
&mut data_buffer,
i as u8,
)
.unwrap()
.unwrap();
println!("Fetched {item:?}");
assert_eq!(item.value, vec![i as u8; LENGHT_PER_KEY[i]]);
}
}
}