seq_runtime/
time_ops.rs

1//! Time operations for Seq
2//!
3//! Provides timing primitives for performance measurement and delays.
4//!
5//! # Usage from Seq
6//!
7//! ```seq
8//! time.now      # ( -- Int ) microseconds since epoch
9//! time.nanos    # ( -- Int ) nanoseconds (monotonic, for timing)
10//! 100 time.sleep-ms  # ( Int -- ) sleep for N milliseconds
11//! ```
12//!
13//! # Example: Measuring execution time
14//!
15//! ```seq
16//! : benchmark ( -- )
17//!   time.nanos    # start time
18//!   do-work
19//!   time.nanos    # end time
20//!   swap -        # elapsed nanos
21//!   1000000 /     # convert to ms
22//!   "Elapsed: " write
23//!   int->string write
24//!   "ms" write-line
25//! ;
26//! ```
27
28use crate::stack::{Stack, pop, push};
29use crate::value::Value;
30use std::time::{Duration, SystemTime, UNIX_EPOCH};
31
32/// Get current time in microseconds since Unix epoch
33///
34/// Stack effect: ( -- Int )
35///
36/// Returns wall-clock time. Good for timestamps.
37/// For measuring durations, prefer `time.nanos` which uses a monotonic clock.
38///
39/// # Safety
40/// - `stack` must be a valid stack pointer (may be null for empty stack)
41#[unsafe(no_mangle)]
42pub unsafe extern "C" fn patch_seq_time_now(stack: Stack) -> Stack {
43    let micros = SystemTime::now()
44        .duration_since(UNIX_EPOCH)
45        .map(|d| d.as_micros() as i64)
46        .unwrap_or(0);
47
48    unsafe { push(stack, Value::Int(micros)) }
49}
50
51/// Get monotonic nanoseconds for precise timing
52///
53/// Stack effect: ( -- Int )
54///
55/// Returns nanoseconds from system boot (CLOCK_MONOTONIC).
56/// Uses raw clock_gettime for consistent values across all threads -
57/// critical for timing when coroutines migrate between OS threads.
58///
59/// Note: Saturates at i64::MAX (~292 years of uptime) to prevent overflow.
60///
61/// # Safety
62/// - `stack` must be a valid stack pointer (may be null for empty stack)
63#[unsafe(no_mangle)]
64pub unsafe extern "C" fn patch_seq_time_nanos(stack: Stack) -> Stack {
65    let nanos = monotonic_nanos();
66    unsafe { push(stack, Value::Int(nanos)) }
67}
68
69/// Get raw monotonic nanoseconds from the system clock.
70///
71/// On Unix: Uses `clock_gettime(CLOCK_MONOTONIC)` directly to get absolute
72/// nanoseconds since boot. This is thread-independent - the same value is
73/// returned regardless of which OS thread calls it.
74///
75/// On Windows: Falls back to `Instant::now()` with a process-wide base time.
76/// This has a one-time initialization cost but is still thread-safe.
77#[inline]
78#[cfg(unix)]
79fn monotonic_nanos() -> i64 {
80    let mut ts = libc::timespec {
81        tv_sec: 0,
82        tv_nsec: 0,
83    };
84    // SAFETY: ts is a valid pointer to a timespec struct
85    unsafe {
86        libc::clock_gettime(libc::CLOCK_MONOTONIC, &mut ts);
87    }
88    // Convert to nanoseconds, saturating at i64::MAX
89    // Explicit i64 casts for portability (tv_sec/tv_nsec types vary by platform)
90    #[allow(clippy::unnecessary_cast)] // Required for 32-bit platforms
91    let secs = (ts.tv_sec as i64).saturating_mul(1_000_000_000);
92    #[allow(clippy::unnecessary_cast)]
93    secs.saturating_add(ts.tv_nsec as i64)
94}
95
96/// Windows fallback using Instant with a process-wide base time.
97/// Uses OnceLock for thread-safe one-time initialization.
98#[inline]
99#[cfg(not(unix))]
100fn monotonic_nanos() -> i64 {
101    use std::sync::OnceLock;
102    use std::time::Instant;
103
104    static BASE: OnceLock<Instant> = OnceLock::new();
105    let base = BASE.get_or_init(Instant::now);
106    base.elapsed().as_nanos().try_into().unwrap_or(i64::MAX)
107}
108
109/// Sleep for a specified number of milliseconds
110///
111/// Stack effect: ( Int -- )
112///
113/// Yields the current strand to the scheduler while sleeping.
114/// Uses `may::coroutine::sleep` for cooperative scheduling.
115///
116/// # Safety
117/// - `stack` must be a valid, non-null stack pointer with an Int on top
118#[unsafe(no_mangle)]
119pub unsafe extern "C" fn patch_seq_time_sleep_ms(stack: Stack) -> Stack {
120    assert!(!stack.is_null(), "time.sleep-ms: stack is empty");
121
122    let (rest, value) = unsafe { pop(stack) };
123
124    match value {
125        Value::Int(ms) => {
126            if ms < 0 {
127                panic!("time.sleep-ms: duration must be non-negative, got {}", ms);
128            }
129
130            // Use may's coroutine-aware sleep for cooperative scheduling
131            may::coroutine::sleep(Duration::from_millis(ms as u64));
132
133            rest
134        }
135        _ => panic!(
136            "time.sleep-ms: expected Int duration on stack, got {:?}",
137            value
138        ),
139    }
140}
141
142// Public re-exports
143pub use patch_seq_time_nanos as time_nanos;
144pub use patch_seq_time_now as time_now;
145pub use patch_seq_time_sleep_ms as time_sleep_ms;
146
147#[cfg(test)]
148mod tests {
149    use super::*;
150    use crate::stack::pop;
151    use std::time::Instant;
152
153    #[test]
154    fn test_time_now_returns_positive() {
155        unsafe {
156            let stack = crate::stack::alloc_test_stack();
157            let stack = patch_seq_time_now(stack);
158            let (_, value) = pop(stack);
159
160            match value {
161                Value::Int(micros) => {
162                    // Should be a reasonable timestamp (after year 2020)
163                    assert!(micros > 1_577_836_800_000_000); // 2020-01-01
164                }
165                _ => panic!("Expected Int"),
166            }
167        }
168    }
169
170    #[test]
171    fn test_time_nanos_monotonic() {
172        unsafe {
173            let stack = crate::stack::alloc_test_stack();
174            let stack = patch_seq_time_nanos(stack);
175            let (_, value1) = pop(stack);
176
177            // Small delay
178            std::thread::sleep(Duration::from_micros(100));
179
180            let stack = crate::stack::alloc_test_stack();
181            let stack = patch_seq_time_nanos(stack);
182            let (_, value2) = pop(stack);
183
184            match (value1, value2) {
185                (Value::Int(t1), Value::Int(t2)) => {
186                    assert!(t2 > t1, "time.nanos should be monotonically increasing");
187                }
188                _ => panic!("Expected Int values"),
189            }
190        }
191    }
192
193    #[test]
194    fn test_time_nanos_cross_thread() {
195        // Verify monotonic_nanos is consistent across threads
196        use std::sync::mpsc;
197        use std::thread;
198
199        let (tx1, rx1) = mpsc::channel();
200        let (tx2, rx2) = mpsc::channel();
201
202        // Get time on main thread
203        let t1 = monotonic_nanos();
204
205        // Spawn thread, get time there
206        let handle = thread::spawn(move || {
207            let t2 = monotonic_nanos();
208            tx1.send(t2).unwrap();
209            rx2.recv().unwrap() // wait for main to continue
210        });
211
212        let t2 = rx1.recv().unwrap();
213
214        // Get time on main thread again
215        let t3 = monotonic_nanos();
216        tx2.send(()).unwrap();
217        handle.join().unwrap();
218
219        // All times should be monotonically increasing
220        assert!(t2 > t1, "t2 ({}) should be > t1 ({})", t2, t1);
221        assert!(t3 > t2, "t3 ({}) should be > t2 ({})", t3, t2);
222    }
223
224    #[test]
225    fn test_time_sleep_ms() {
226        unsafe {
227            // Push 1ms sleep duration
228            let stack = crate::stack::alloc_test_stack();
229            let stack = push(stack, Value::Int(1));
230
231            let start = Instant::now();
232            let _stack = patch_seq_time_sleep_ms(stack);
233            let elapsed = start.elapsed();
234
235            // Should sleep at least 1ms
236            assert!(elapsed >= Duration::from_millis(1));
237            // Stack should be empty after popping the duration
238        }
239    }
240}