Expand description
§RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al.)
Implementation of the RoBERTa language model (https://arxiv.org/abs/1907.11692 Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, Stoyanov, 2019).
The base model is implemented in the bert_model::BertModel
struct. Several language model heads have also been implemented, including:
- Masked language model:
roberta_model::RobertaForMaskedLM
- Multiple choices:
roberta_model:RobertaForMultipleChoice
- Question answering:
roberta_model::RobertaForQuestionAnswering
- Sequence classification:
roberta_model::RobertaForSequenceClassification
- Token classification (e.g. NER, POS tagging):
roberta_model::RobertaForTokenClassification
§Model set-up and pre-trained weights loading
The example below illustrate a Masked language model example, the structure is similar for other models. All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. RobertaTokenizer
using avocab.txt
vocabulary andmerges.txt
2-gram merges
Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::bert::BertConfig;
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::roberta::RobertaForMaskedLM;
use rust_bert::Config;
use rust_tokenizers::tokenizer::RobertaTokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let merges_resource = LocalResource {
local_path: PathBuf::from("path/to/merges.txt"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let merges_path = merges_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(
vocab_path.to_str().unwrap(),
merges_path.to_str().unwrap(),
true,
true,
)?;
let config = BertConfig::from_file(config_path);
let bert_model = RobertaForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- Roberta
Config Resources - RoBERTa Pretrained model config files
- Roberta
Embeddings - BertEmbeddings implementation for RoBERTa model
- Roberta
ForMaskedLM - RoBERTa for masked language model
- Roberta
ForMultiple Choice - RoBERTa for multiple choices
- Roberta
ForQuestion Answering - RoBERTa for question answering
- Roberta
ForSequence Classification - RoBERTa for sequence classification
- Roberta
ForToken Classification - RoBERTa for token classification (e.g. NER, POS)
- Roberta
Merges Resources - RoBERTa Pretrained model merges files
- Roberta
Model Resources - RoBERTa Pretrained model weight files
- Roberta
Vocab Resources - RoBERTa Pretrained model vocab files
Type Aliases§
- Roberta
Config - RoBERTa model configuration
- Roberta
ForSentence Embeddings - RoBERTa for sentence embeddings