Module roberta

Source
Expand description

§RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al.)

Implementation of the RoBERTa language model (https://arxiv.org/abs/1907.11692 Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, Stoyanov, 2019). The base model is implemented in the bert_model::BertModel struct. Several language model heads have also been implemented, including:

  • Masked language model: roberta_model::RobertaForMaskedLM
  • Multiple choices: roberta_model:RobertaForMultipleChoice
  • Question answering: roberta_model::RobertaForQuestionAnswering
  • Sequence classification: roberta_model::RobertaForSequenceClassification
  • Token classification (e.g. NER, POS tagging): roberta_model::RobertaForTokenClassification

§Model set-up and pre-trained weights loading

The example below illustrate a Masked language model example, the structure is similar for other models. All models expect the following resources:

  • Configuration file expected to have a structure following the Transformers library
  • Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the .bin weights to the .ot format.
  • RobertaTokenizer using a vocab.txt vocabulary and merges.txt 2-gram merges

Pretrained models are available and can be downloaded using RemoteResources.

use tch::{nn, Device};
use rust_bert::bert::BertConfig;
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::roberta::RobertaForMaskedLM;
use rust_bert::Config;
use rust_tokenizers::tokenizer::RobertaTokenizer;

let config_resource = LocalResource {
    local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
    local_path: PathBuf::from("path/to/vocab.txt"),
};
let merges_resource = LocalResource {
    local_path: PathBuf::from("path/to/merges.txt"),
};
let weights_resource = LocalResource {
    local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let merges_path = merges_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;

let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(
    vocab_path.to_str().unwrap(),
    merges_path.to_str().unwrap(),
    true,
    true,
)?;
let config = BertConfig::from_file(config_path);
let bert_model = RobertaForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;

Structs§

RobertaConfigResources
RoBERTa Pretrained model config files
RobertaEmbeddings
BertEmbeddings implementation for RoBERTa model
RobertaForMaskedLM
RoBERTa for masked language model
RobertaForMultipleChoice
RoBERTa for multiple choices
RobertaForQuestionAnswering
RoBERTa for question answering
RobertaForSequenceClassification
RoBERTa for sequence classification
RobertaForTokenClassification
RoBERTa for token classification (e.g. NER, POS)
RobertaMergesResources
RoBERTa Pretrained model merges files
RobertaModelResources
RoBERTa Pretrained model weight files
RobertaVocabResources
RoBERTa Pretrained model vocab files

Type Aliases§

RobertaConfig
RoBERTa model configuration
RobertaForSentenceEmbeddings
RoBERTa for sentence embeddings