Expand description
§Pegasus (Zhang et al.)
Implementation of the Pegasus language model (PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization Zhang, Zhao, Saleh, Liu, 2019).
The base model is implemented in the pegasus_model::PegasusModel
struct and leverages an implementation that is broadly similar to BART. The model also includes a language model head: pegasus_model::PegasusForConditionalGeneration
implementing the common generation_utils::LanguageGenerator
trait shared between the models used for generation (see pipelines
for more information).
§Model set-up and pre-trained weights loading
A full working example is provided in examples/summarization_pegasus
, run with cargo run --example summarization_pegasus
.
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. PegasusTokenizer
using aspiece.model
vocabulary and unigram model.
Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::pegasus::{PegasusConfig, PegasusModel};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::PegasusTokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/spiece.model"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: PegasusTokenizer =
PegasusTokenizer::from_file(vocab_path.to_str().unwrap(), false)?;
let config = PegasusConfig::from_file(config_path);
let pegasus_model = PegasusModel::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- Pegasus
Conditional Generator - Language generation model based on the Pegasus architecture
- Pegasus
Config Resources - Pegasus Pretrained model config files
- Pegasus
ForConditional Generation - Pegasus Model for conditional generation
- Pegasus
Model - Pegasus Base model
- Pegasus
Model Resources - Pegasus Pretrained model weight files
- Pegasus
Vocab Resources - Pegasus Pretrained model vocab files
Type Aliases§
- Layer
State - Cache for Pegasus attention layers
- Pegasus
Config - Pegasus model configuration