Expand description
§FNet, Mixing Tokens with Fourier Transforms (Lee-Thorp et al.)
Implementation of the FNet language model (https://arxiv.org/abs/2105.03824 Lee-Thorp, Ainslie, Eckstein, Ontanon, 2021).
The base model is implemented in the fnet_model::FNetModel
struct. Several language model heads have also been implemented, including:
- Masked language model:
fnet_model::FNetForMaskedLM
- Question answering:
fnet_model::FNetForQuestionAnswering
- Sequence classification:
fnet_model::FNetForSequenceClassification
- Token classification (e.g. NER, POS tagging):
fnet_model::FNetForTokenClassification
§Model set-up and pre-trained weights loading
The example below illustrate a FNet Masked language model example, the structure is similar for other models. All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. FNetTokenizer
using aspiece.model
SentencePiece (BPE) model file
Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::fnet::{FNetConfig, FNetForMaskedLM};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::{BertTokenizer, FNetTokenizer};
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/spiece.model"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: FNetTokenizer =
FNetTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?;
let config = FNetConfig::from_file(config_path);
let bert_model = FNetForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- FNet
Config - FNet model configuration
- FNet
Config Resources - FNet Pretrained model config files
- FNet
ForMaskedLM - FNet for masked language model
- FNet
ForMultiple Choice - FNet for multiple choices
- FNet
ForQuestion Answering - FNet for question answering
- FNet
ForSequence Classification - FNet for sequence classification
- FNet
ForToken Classification - FNet for token classification (e.g. NER, POS)
- FNet
MaskedLM Output - Container for the FNet masked LM model output.
- FNet
Model - FNet Base model
- FNet
Model Output - Container for the FNet model output.
- FNet
Model Resources - FNet Pretrained model weight files
- FNet
Question Answering Output - Container for the FNet question answering model output.
- FNet
Sequence Classification Output - Container for the FNet sequence classification model output.
- FNet
Vocab Resources - FNet Pretrained model vocab files
Type Aliases§
- FNet
Token Classification Output - Container for the FNet token classification model output.