Module mbart

Source
Expand description

§MBart (Liu et al.)

Implementation of the MBart language model (Multilingual Denoising Pre-training for Neural Machine Translation Liu, Gu, Goyal, Li, Edunov, Ghazvininejad, Lewis, Zettlemoyer, 2020). The base model is implemented in the mbart_model::MBartModel struct. The model also includes a language model head: mbart_model::MBartForConditionalGeneration implementing the common generation_utils::LanguageGenerator trait shared between the models used for generation (see pipelines for more information).

§Model set-up and pre-trained weights loading

The translation capabilities are illustrated in examples/translation_mbart, run with cargo run --example translation_mbart. All models expect the following resources:

  • Configuration file expected to have a structure following the Transformers library
  • Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the .bin weights to the .ot format.
  • MBart50Tokenizer using a spiece.model SentencePiece model

Pretrained models are available and can be downloaded using RemoteResources.

use tch::{nn, Device};
use rust_bert::mbart::{MBartConfig, MBartModel};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::MBart50Tokenizer;

let config_resource = LocalResource {
    local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
    local_path: PathBuf::from("path/to/vocab.txt"),
};
let weights_resource = LocalResource {
    local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;

let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: MBart50Tokenizer =
    MBart50Tokenizer::from_file(vocab_path.to_str().unwrap(), false)?;
let config = MBartConfig::from_file(config_path);
let mbart_model = MBartModel::new(&vs.root(), &config);
vs.load(weights_path)?;

Structs§

MBartConfig
MBART model configuration
MBartConfigResources
MBART Pretrained model config files
MBartForConditionalGeneration
MBart Model for conditional generation
MBartForSequenceClassification
MBart Model for sequence classification
MBartGenerator
Language generation model based on the MBart architecture
MBartModel
MBart Base model
MBartModelResources
MBART Pretrained model weight files
MBartSourceLanguages
MBART source languages pre-sets
MBartVocabResources
MBART Pretrained model vocab files

Type Aliases§

LayerState
MBartModelOutput
Container holding a MBART model output
MBartTargetLanguages
MBART target languages pre-sets