Expand description
§LongT5 (Efficient Text-To-Text Transformer for Long Sequences)
Implementation of the LongT5 language model (LongT5: Efficient Text-To-Text Transformer for Long Sequences Guo, Ainslie, Uthus, Ontanon, Ni, Sung, Yang, 2021).
The base model is implemented in the longt5_model::LongT5Model
struct. This model includes a language model head: longt5_model::LongT5ForConditionalGeneration
implementing the common generation_utils::LanguageGenerator
trait shared between the models used for generation (see pipelines
for more information).
§Model set-up and pre-trained weights loading
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. T5Tokenizer
using aspiece.model
sentence piece model
Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::longt5::{LongT5Config, LongT5ForConditionalGeneration};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::T5Tokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let sentence_piece_resource = LocalResource {
local_path: PathBuf::from("path/to/spiece.model"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let spiece_path = sentence_piece_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer = T5Tokenizer::from_file(spiece_path.to_str().unwrap(), true);
let config = LongT5Config::from_file(config_path);
let longt5_model = LongT5ForConditionalGeneration::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- Long
T5Config - LongT5 model configuration
- Long
T5Config Resources - LongT5 Pretrained model config files
- Long
T5For Conditional Generation - LongT5 Model for conditional generation
- Long
T5Generator - Long
T5Model - LongT5 Base model
- Long
T5Model Resources - LongT5 Pretrained model weight files
- Long
T5Vocab Resources - LongT5 Pretrained model vocab files