Expand description
§GPT2 (Radford et al.)
Implementation of the GPT2 language model (Language Models are Unsupervised Multitask Learners Radford, Wu, Child, Luan, Amodei, Sutskever 2019).
The base model is implemented in the gpt2_model::Gpt2Model
struct. The model also includes a language model head: gpt2_model::GPT2LMHeadModel
implementing the common generation_utils::LanguageGenerator
trait shared between the models used for generation (see pipelines
for more information).
§Model set-up and pre-trained weights loading
A full working example is provided in examples/generation_gpt2
, run with cargo run --example generation_gpt2
.
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. Gpt2Tokenizer
using avocab.txt
vocabulary andmerges.txt
2-gram merges
Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::gpt2::{GPT2LMHeadModel, Gpt2Config};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::Gpt2Tokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let merges_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let merges_path = merges_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: Gpt2Tokenizer = Gpt2Tokenizer::from_file(
vocab_path.to_str().unwrap(),
merges_path.to_str().unwrap(),
true,
)?;
let config = Gpt2Config::from_file(config_path);
let gpt2_model = GPT2LMHeadModel::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- GPT2
Generator - Language generation model based on the GPT2 architecture
- GPT2LM
Head Model - GPT2 Language Modeling head
- Gpt2
Config - GPT2 model configuration
- Gpt2
Config Resources - GPT2 Pretrained model config files
- Gpt2
Merges Resources - GPT2 Pretrained model merges files
- Gpt2
Model - GPT2 Base model
- Gpt2
Model Output - Container for the GPT2 model output.
- Gpt2
Model Resources - GPT2 Pretrained model weight files
- Gpt2
Vocab Resources - GPT2 Pretrained model vocab files