1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
use super::*;
use std::convert::Infallible;
use full_moon::{
ast::{self, Ast},
node::Node,
visitors::Visitor,
};
pub struct DivideByZeroLint;
impl Rule for DivideByZeroLint {
type Config = ();
type Error = Infallible;
fn new(_: Self::Config) -> Result<Self, Self::Error> {
Ok(DivideByZeroLint)
}
fn pass(&self, ast: &Ast, _: &Context) -> Vec<Diagnostic> {
let mut visitor = DivideByZeroVisitor {
positions: Vec::new(),
};
visitor.visit_ast(ast);
visitor
.positions
.iter()
.map(|position| {
Diagnostic::new(
"divide_by_zero",
"dividing by zero is not allowed, use math.huge instead".to_owned(),
Label::new(*position),
)
})
.collect()
}
fn severity(&self) -> Severity {
Severity::Warning
}
fn rule_type(&self) -> RuleType {
RuleType::Complexity
}
}
struct DivideByZeroVisitor {
positions: Vec<(usize, usize)>,
}
fn value_is_zero(value: &ast::Value) -> bool {
if let ast::Value::Number(token) = value {
token.token().to_string() == "0"
} else {
false
}
}
impl Visitor for DivideByZeroVisitor {
fn visit_expression(&mut self, node: &ast::Expression) {
if_chain::if_chain! {
if let ast::Expression::BinaryOperator { lhs, binop, rhs, .. } = node;
if let ast::Expression::Value { value, .. } = &**lhs;
if let ast::BinOp::Slash(_) = binop;
if let ast::Expression::Value {
value: rhs_value, ..
} = &**rhs;
if value_is_zero(rhs_value) && !value_is_zero(value);
then {
let range = node.range().unwrap();
self.positions.push((range.0.bytes(), range.1.bytes()));
}
}
}
}
#[cfg(test)]
mod tests {
use super::{super::test_util::test_lint, *};
#[test]
fn test_divide_by_zero() {
test_lint(
DivideByZeroLint::new(()).unwrap(),
"divide_by_zero",
"divide_by_zero",
);
}
}