1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use crate::nodes::{LazyNode, Node};

/// Lazy segment tree with range queries and range updates.
/// It uses `O(n)` space, assuming that each node uses `O(1)` space.
pub struct LazySegmentTree<T: LazyNode> {
    nodes: Vec<T>,
    n: usize,
}

impl<T: LazyNode + Clone> LazySegmentTree<T> {
    /// Builds lazy segment tree from slice, each element of the slice will correspond to a leaf of the segment tree.
    /// It has time complexity of `O(n*log(n))`, assuming that [combine](Node::combine) has constant time complexity.
    pub fn build(values: &[T]) -> Self {
        let n = values.len();
        let mut nodes = Vec::with_capacity(4 * n);
        for _ in 0..4 {
            for v in values {
                nodes.push(v.clone());
            }
        }
        let mut out = Self { nodes, n };
        out.build_helper(0, 0, n - 1, values);
        out
    }

    fn build_helper(&mut self, curr_node: usize, i: usize, j: usize, values: &[T]) {
        if i == j {
            self.nodes[curr_node] = values[i].clone();
            return;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        self.build_helper(left_node, i, mid, values);
        self.build_helper(right_node, mid + 1, j, values);
        self.nodes[curr_node] = T::combine(&self.nodes[left_node], &self.nodes[right_node]);
    }

    fn push(&mut self, u: usize, i: usize, j: usize) {
        // parent_slice.len() == u + 1 && sons_slice.len() == 4*self.n - (u + 1)
        let (parent_slice, sons_slice) = self.nodes.split_at_mut(u + 1);
        if let Some(value) = parent_slice[u].lazy_value() {
            if i != j {
                sons_slice[u].update_lazy_value(value); // At 2*u + 1 - (u + 1)
                sons_slice[u + 1].update_lazy_value(value); // At 2*u + 2 - (u + 1)
            }
        }
        self.nodes[u].lazy_update(i, j);
    }

    /// Updates the range \[i,j\] with value.
    /// It will panic if i or j is not in \[0,n).
    /// It has time complexity of `O(log(n))`, assuming that [combine](Node::combine), [update_lazy_value](LazyNode::update_lazy_value) and [update_lazy_value](LazyNode::lazy_update) have constant time complexity.
    pub fn update(&mut self, i: usize, j: usize, value: <T as Node>::Value) {
        self.update_helper(i, j, &value, 0, 0, self.n - 1);
    }

    fn update_helper(
        &mut self,
        left: usize,
        right: usize,
        value: &<T as Node>::Value,
        curr_node: usize,
        i: usize,
        j: usize,
    ) {
        if self.nodes[curr_node].lazy_value().is_some() {
            self.push(curr_node, i, j);
        }
        if j < left || right < i {
            return;
        }
        if left <= i && j <= right {
            self.nodes[curr_node].update_lazy_value(value);
            self.push(curr_node, i, j);
            return;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        self.update_helper(left, right, value, left_node, i, mid);
        self.update_helper(left, right, value, right_node, mid + 1, j);
        self.nodes[curr_node] = T::combine(&self.nodes[left], &self.nodes[right]);
    }

    /// Returns the result from the range \[left,right\].
    /// It returns None if and only if range is empty.
    /// It will **panic** if left or right are not in [0,n).
    /// It has time complexity of `O(log(n))`, assuming that [combine](Node::combine), [update_lazy_value](LazyNode::update_lazy_value) and [update_lazy_value](LazyNode::lazy_update) have constant time complexity.
    pub fn query(&mut self, left: usize, right: usize) -> Option<T> {
        self.query_helper(left, right, 0, 0, self.n - 1)
    }

    fn query_helper(
        &mut self,
        left: usize,
        right: usize,
        curr_node: usize,
        i: usize,
        j: usize,
    ) -> Option<T> {
        if j < left || right < i {
            return None;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        if self.nodes[curr_node].lazy_value().is_some() {
            self.push(curr_node, i, j);
        }
        if left <= i && j <= right {
            return Some(self.nodes[curr_node].clone());
        }
        match (
            self.query_helper(left, right, left_node, i, mid),
            self.query_helper(left, right, right_node, mid + 1, right),
        ) {
            (Some(ans_left), Some(ans_right)) => Some(T::combine(&ans_left, &ans_right)),
            (Some(ans_left), None) => Some(ans_left),
            (None, Some(ans_right)) => Some(ans_right),
            (None, None) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{default::Min, nodes::Node};

    use super::LazySegmentTree;
    // TODO Add more tests
    #[test]
    fn non_empty_query_returns_some() {
        let nodes: Vec<Min<usize>> = (0..10).map(|x| Min::initialize(&x)).collect();
        let mut segment_tree = LazySegmentTree::build(&nodes);
        assert!(segment_tree.query(0, 9).is_some());
    }
    #[test]
    fn empty_query_returns_none() {
        let nodes: Vec<Min<usize>> = (0..10).map(|x| Min::initialize(&x)).collect();
        let mut segment_tree = LazySegmentTree::build(&nodes);
        assert!(segment_tree.query(10, 0).is_none());
    }
    #[test]
    fn update_works() {
        let nodes: Vec<Min<usize>> = (0..10).map(|x| Min::initialize(&x)).collect();
        let mut segment_tree = LazySegmentTree::build(&nodes);
        let value = 20;
        segment_tree.update(0, 9, value);
        assert_eq!(segment_tree.query(0, 1).unwrap().value(), &value);
    }
    #[test]
    fn query_works() {
        let nodes: Vec<Min<usize>> = (0..10).map(|x| Min::initialize(&x)).collect();
        let mut segment_tree = LazySegmentTree::build(&nodes);
        assert_eq!(segment_tree.query(1, 9).unwrap().value(), &1);
    }
}