1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
use crate::permutation::core::CHACHA20_NONCE_SIZE;
use super::core::{permute, xor_bytes, Block, CONSTANTS, STATE_WORDS};
use super::Permutation;
/// The `ChaCha20` struct represents the ChaCha20 stream cipher.
pub struct ChaCha20 {
state: Block,
}
impl ChaCha20 {
/// Constructs a new `ChaCha20` cipher instance.
///
/// This function initializes the internal state of the cipher.
///
/// # Returns
/// A new instance of `ChaCha20`.
pub fn new() -> Self {
Self {
state: [0u32; STATE_WORDS],
}
}
/// Generates the next 64-byte keystream block from the ChaCha20 state.
///
/// This function advances the ChaCha20 state and produces a keystream block based on the current state.
/// It performs a permutation of the state, increments the block counter to ensure uniqueness for subsequent calls,
/// and then serializes the permuted state into a 64-byte array.
///
/// # Returns
/// A 64-byte array representing the generated keystream block.
///
/// # Panics
/// Panics if the 32-bit block counter overflows, which would only happen after a very large
/// number of blocks (2^32-1) have been processed with the same key-nonce combination.
///
/// # Example
/// ```
/// use secured_cipher::{ChaCha20, Permutation};
///
/// let mut chacha20 = ChaCha20::new();
/// chacha20.init(&[0_u8; 32], &[0_u8; 12]);
///
/// let keystream_block = chacha20.next_keystream();
/// // `keystream_block` now contains the next 64 bytes of the keystream
/// ```
///
/// # Notes
/// The keystream generated by this function is used to encrypt or decrypt data by XORing
/// it with the plaintext or ciphertext. Each call to this function must produce a unique keystream block.
/// This uniqueness is guaranteed by incrementing the internal block counter.
pub fn next_keystream(&mut self) -> [u8; 64] {
// Ensures the block counter has not overflowed
assert!(self.state[12] != 0, "ChaCha20 counter overflow");
// Initialize an array to hold the keystream
let mut keystream = [0u8; 64];
// Perform the ChaCha20 permutation on the current state
let block = permute(&self.state);
// Increment the block counter, wrapping around if it reaches its maximum value
self.state[12] = self.state[12].wrapping_add(1);
// Convert the 32-bit words from the permuted block into bytes and copy them into the keystream
for (bytes, word) in keystream.chunks_exact_mut(4).zip(block) {
bytes.copy_from_slice(&word.to_le_bytes());
}
// Return the generated 64-byte keystream block
keystream
}
}
impl Permutation for ChaCha20 {
/// Initializes the ChaCha20 cipher with a given key and IV (initialization vector).
///
/// This method sets up the cipher's internal state which includes the ChaCha20 constants, the provided key,
/// a zeroed block counter, and the provided IV.
///
/// # Arguments
/// * `key` - A 256-bit key represented as 32 bytes.
/// * `iv` - A 86-bit IV (nonce) represented as 12 bytes.
fn init(&mut self, key: &[u8], iv: &[u8]) {
// The key must be 256 bits (32 bytes) long, and the IV must be 64 bits (8 bytes) long.
assert!(key.len() == 32);
assert!(iv.len() == CHACHA20_NONCE_SIZE);
// The first four words (16 bytes) of the state are set to the ChaCha20 constant.
// This constant is the ASCII string "expand 32-byte k", used for creating the initial state.
self.state[0..4].copy_from_slice(&CONSTANTS);
// The next eight words (32 bytes) of the state are set to the encryption key.
// The key is divided into 8 chunks, each containing 4 bytes (32 bits).
// Each chunk is then converted from little-endian byte order to a u32 and stored in the state array.
let key_chunks = key.chunks_exact(4);
for (val, chunk) in self.state[4..12].iter_mut().zip(key_chunks) {
*val = u32::from_le_bytes(chunk.try_into().unwrap());
}
// The block counter occupies the next word (13th positions) in the state.
// In ChaCha20, this counter is used to make each block unique.
self.state[12] = 1;
// Here, we use the last 8-byte space of the block for the IV (initialization vector).
let iv_chunks = iv.chunks_exact(4);
for (val, chunk) in self.state[13..16].iter_mut().zip(iv_chunks) {
*val = u32::from_le_bytes(chunk.try_into().unwrap());
}
}
/// Processes input data using the ChaCha20 cipher algorithm.
///
/// This function applies the ChaCha20 encryption or decryption process to the given input bytes.
/// It works by generating a unique keystream for each 64-byte block of the input data and then
/// applying an XOR operation between the data block and the keystream. This process is suitable
/// for both encryption and decryption due to the reversible nature of the XOR operation.
///
/// # Arguments
/// * `bytes_in` - A slice of bytes representing the input data to be processed (either plaintext for encryption
/// or ciphertext for decryption).
///
/// # Returns
/// A `Vec<u8>` containing the processed data (encrypted or decrypted).
///
/// # Behavior
/// The function divides the input data into 64-byte blocks. For each block, it generates a unique
/// keystream using the `next_keystream` method. Each block of the input data is then XORed with its
/// corresponding keystream block. This method ensures that each block is encrypted or decrypted
/// with a different keystream, which is essential for the security of the cipher.
///
/// After processing all blocks, the function clears the internal state to prevent any residual
/// sensitive data from remaining in memory.
///
/// # Example
/// ```
/// use secured_cipher::{ChaCha20, Permutation};
///
/// let mut chacha20 = ChaCha20::new();
/// chacha20.init(&[0_u8; 32], &[0_u8; 12]);
///
/// let data = b"some plaintext data"; // Data to be encrypted or decrypted
/// let processed_data = chacha20.process(data);
/// // `processed_data` now contains the encrypted or decrypted output
/// ```
///
/// # Notes
/// It's important to use the same nonce and key for decrypting the data that were used for encryption.
/// The output size will be equal to the input size, as ChaCha20 is a stream cipher.
fn process(&mut self, bytes_in: &[u8]) -> Vec<u8> {
// Clone the input bytes to prepare the output vector
let mut out = bytes_in.to_owned();
// Process each 64-byte block of the input data
out.chunks_mut(64).for_each(|plain_chunk| {
// Generate the keystream for the current block
let keystream = self.next_keystream();
// XOR the block with the keystream to perform encryption/decryption
xor_bytes(plain_chunk, &keystream);
});
// Clear the internal state after processing to maintain security
self.clear();
// Return the processed data
out.to_vec()
}
/// Clears the internal counter of the cipher.
fn clear(&mut self) {
// Reset the block counter
self.state[12] = 1;
}
}
#[cfg(test)]
mod tests {
use super::*;
const PLAINTEXT: [u8; 114] = [
0x4c, 0x61, 0x64, 0x69, 0x65, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x47, 0x65, 0x6e, 0x74, 0x6c,
0x65, 0x6d, 0x65, 0x6e, 0x20, 0x6f, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x61, 0x73,
0x73, 0x20, 0x6f, 0x66, 0x20, 0x27, 0x39, 0x39, 0x3a, 0x20, 0x49, 0x66, 0x20, 0x49, 0x20, 0x63,
0x6f, 0x75, 0x6c, 0x64, 0x20, 0x6f, 0x66, 0x66, 0x65, 0x72, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x6f,
0x6e, 0x6c, 0x79, 0x20, 0x6f, 0x6e, 0x65, 0x20, 0x74, 0x69, 0x70, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x74, 0x68, 0x65, 0x20, 0x66, 0x75, 0x74, 0x75, 0x72, 0x65, 0x2c, 0x20, 0x73, 0x75, 0x6e, 0x73,
0x63, 0x72, 0x65, 0x65, 0x6e, 0x20, 0x77, 0x6f, 0x75, 0x6c, 0x64, 0x20, 0x62, 0x65, 0x20, 0x69,
0x74, 0x2e,
];
const KEY: [u8; 32] = [
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
];
const CIPHERTEXT: [u8; 114] = [
0x6e, 0x2e, 0x35, 0x9a, 0x25, 0x68, 0xf9, 0x80, 0x41, 0xba, 0x07, 0x28, 0xdd, 0x0d, 0x69, 0x81,
0xe9, 0x7e, 0x7a, 0xec, 0x1d, 0x43, 0x60, 0xc2, 0x0a, 0x27, 0xaf, 0xcc, 0xfd, 0x9f, 0xae, 0x0b,
0xf9, 0x1b, 0x65, 0xc5, 0x52, 0x47, 0x33, 0xab, 0x8f, 0x59, 0x3d, 0xab, 0xcd, 0x62, 0xb3, 0x57,
0x16, 0x39, 0xd6, 0x24, 0xe6, 0x51, 0x52, 0xab, 0x8f, 0x53, 0x0c, 0x35, 0x9f, 0x08, 0x61, 0xd8,
0x07, 0xca, 0x0d, 0xbf, 0x50, 0x0d, 0x6a, 0x61, 0x56, 0xa3, 0x8e, 0x08, 0x8a, 0x22, 0xb6, 0x5e,
0x52, 0xbc, 0x51, 0x4d, 0x16, 0xcc, 0xf8, 0x06, 0x81, 0x8c, 0xe9, 0x1a, 0xb7, 0x79, 0x37, 0x36,
0x5a, 0xf9, 0x0b, 0xbf, 0x74, 0xa3, 0x5b, 0xe6, 0xb4, 0x0b, 0x8e, 0xed, 0xf2, 0x78, 0x5e, 0x42,
0x87, 0x4d,
];
const IV: [u8; CHACHA20_NONCE_SIZE] = [
0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a, 0x00, 0x00, 0x00, 0x00,
];
#[test]
fn it_correctly_inits_the_chacha20_state() {
let mut chacha20 = ChaCha20::new();
chacha20.init(&KEY, &IV);
assert_eq!(
chacha20.state,
[
0x61707865, 0x3320646e, 0x79622d32, 0x6b206574, 0x03020100, 0x07060504, 0x0b0a0908,
0x0f0e0d0c, 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c, 0x00000001, 0x09000000,
0x4a000000, 0x00000000
]
);
}
#[test]
fn it_gets_the_first_keystream() {
let mut chacha20 = ChaCha20::new();
chacha20.init(&KEY, &IV);
let block = chacha20.next_keystream();
assert_eq!(
block,
[
0x10, 0xf1, 0xe7, 0xe4, 0xd1, 0x3b, 0x59, 0x15, 0x50, 0x0f, 0xdd, 0x1f, 0xa3, 0x20, 0x71,
0xc4, 0xc7, 0xd1, 0xf4, 0xc7, 0x33, 0xc0, 0x68, 0x03, 0x04, 0x22, 0xaa, 0x9a, 0xc3, 0xd4,
0x6c, 0x4e, 0xd2, 0x82, 0x64, 0x46, 0x07, 0x9f, 0xaa, 0x09, 0x14, 0xc2, 0xd7, 0x05, 0xd9,
0x8b, 0x02, 0xa2, 0xb5, 0x12, 0x9c, 0xd1, 0xde, 0x16, 0x4e, 0xb9, 0xcb, 0xd0, 0x83, 0xe8,
0xa2, 0x50, 0x3c, 0x4e,
]
);
}
#[test]
fn it_encrypts_data() {
let mut chacha20 = ChaCha20::new();
chacha20.init(
&KEY,
&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4a, 0x00, 0x00, 0x00, 0x00,
],
);
let encrypted_data = chacha20.process(&PLAINTEXT);
assert_eq!(encrypted_data, CIPHERTEXT);
}
#[test]
fn it_can_reverse_encryption() {
let mut chacha20 = ChaCha20::new();
chacha20.init(&[1u8; 32], &[2u8; CHACHA20_NONCE_SIZE]);
let data = [0u8; 64];
let encrypted_data = chacha20.process(&data);
let decrypted_data = chacha20.process(&encrypted_data);
assert_eq!(decrypted_data, data);
}
#[test]
fn it_can_reverse_encryption_for_data_smaller_than_a_chunk() {
let mut chacha20 = ChaCha20::new();
chacha20.init(&[1u8; 32], &[2u8; CHACHA20_NONCE_SIZE]);
let data = [0u8; 1];
let encrypted_data = chacha20.process(&data);
let decrypted_data = chacha20.process(&encrypted_data);
assert_eq!(decrypted_data, data);
}
}