secure_types/
array.rs

1#[cfg(not(feature = "use_os"))]
2use alloc::{Layout, alloc, dealloc};
3
4use super::{Error, SecureVec};
5use core::{marker::PhantomData, mem, ptr::NonNull};
6use zeroize::Zeroize;
7
8#[cfg(feature = "use_os")]
9use super::{alloc_aligned, free, page_aligned_size};
10#[cfg(feature = "use_os")]
11use memsec::Prot;
12
13/// A fixed-size array allocated in a secure memory region.
14///
15/// ## Security Model
16///
17/// When compiled with the `use_os` feature (the default), it provides several layers of protection:
18/// - **Zeroization on Drop**: The memory is zeroized when the array is dropped.
19/// - **Memory Locking**: The underlying memory pages are locked using `mlock` & `madvise` for (Unix) or
20///   `VirtualLock` & `VirtualProtect` for (Windows) to prevent the OS from memory-dump/swap to disk or other processes accessing the memory.
21/// - **Memory Encryption**: On Windows, the memory is also encrypted using `CryptProtectMemory`.
22///
23/// In a `no_std` environment, it falls back to providing only the **zeroization-on-drop** guarantee.
24///
25/// # Program Termination
26///
27/// Direct indexing (e.g., `array[0]`) on a locked array will cause the operating system
28/// to terminate the process with an access violation error. Always use the provided
29/// scope methods (`unlock`, `unlock_mut`) for safe access.
30///
31/// # Notes
32///
33/// If you return a new allocated `[T; LENGTH]` from one of the unlock methods you are responsible for zeroizing the memory.
34///
35/// # Example
36///
37/// ```
38/// use secure_types::{SecureArray, Zeroize};
39///
40/// let exposed_key: &mut [u8; 32] = &mut [1u8; 32];
41/// let secure_key: SecureArray<u8, 32> = SecureArray::from_slice_mut(exposed_key).unwrap();
42///
43/// secure_key.unlock(|unlocked_slice| {
44///     assert_eq!(unlocked_slice.len(), 32);
45///     assert_eq!(unlocked_slice[0], 1);
46/// });
47///
48/// // Not recommended but if you allocate a new [u8; LENGTH] make sure to zeroize it
49/// let mut exposed = secure_key.unlock(|unlocked_slice| {
50///     [unlocked_slice[0], unlocked_slice[1], unlocked_slice[2]]
51/// });
52///
53/// // Do what you need to to do with the new array
54/// // When you are done with it, zeroize it
55/// exposed.zeroize();
56/// ```
57pub struct SecureArray<T, const LENGTH: usize>
58where
59   T: Zeroize,
60{
61   ptr: NonNull<T>,
62   _marker: PhantomData<T>,
63}
64
65unsafe impl<T: Zeroize + Send, const LENGTH: usize> Send for SecureArray<T, LENGTH> {}
66unsafe impl<T: Zeroize + Send + Sync, const LENGTH: usize> Sync for SecureArray<T, LENGTH> {}
67
68impl<T, const LENGTH: usize> SecureArray<T, LENGTH>
69where
70   T: Zeroize,
71{
72   /// Creates an empty (but allocated) SecureArray.
73   ///
74   /// The memory is allocated but not initialized, and it's the caller's responsibility to fill it.
75   pub fn empty() -> Result<Self, Error> {
76      let size = LENGTH * mem::size_of::<T>();
77      if size == 0 {
78         // Cannot create a zero-sized secure array
79         return Err(Error::LengthCannotBeZero);
80      }
81
82      let ptr = unsafe { alloc_aligned::<T>(size)? };
83
84      let secure_array = SecureArray {
85         ptr,
86         _marker: PhantomData,
87      };
88
89      let (encrypted, locked) = secure_array.lock_memory();
90
91      #[cfg(feature = "use_os")]
92      if !locked {
93         return Err(Error::LockFailed);
94      }
95
96      #[cfg(feature = "use_os")]
97      if !encrypted {
98         return Err(Error::CryptProtectMemoryFailed);
99      }
100
101      Ok(secure_array)
102   }
103
104   /// Creates a new SecureArray from a `&mut [T; LENGTH]`.
105   ///
106   /// The passed slice is zeroized afterwards
107   pub fn from_slice_mut(content: &mut [T; LENGTH]) -> Result<Self, Error> {
108      let secure_array = Self::empty()?;
109
110      secure_array.unlock_memory();
111
112      unsafe {
113         // Copy the data from the source array into the secure memory region
114         core::ptr::copy_nonoverlapping(
115            content.as_ptr(),
116            secure_array.ptr.as_ptr(),
117            LENGTH,
118         );
119      }
120
121      content.zeroize();
122
123      let (encrypted, locked) = secure_array.lock_memory();
124
125      #[cfg(feature = "use_os")]
126      if !locked {
127         return Err(Error::LockFailed);
128      }
129
130      #[cfg(feature = "use_os")]
131      if !encrypted {
132         return Err(Error::CryptProtectMemoryFailed);
133      }
134
135      Ok(secure_array)
136   }
137
138   /// Creates a new SecureArray from a `&[T; LENGTH]`.
139   ///
140   /// The array is not zeroized, you are responsible for zeroizing it
141   pub fn from_slice(content: &[T; LENGTH]) -> Result<Self, Error> {
142      let secure_array = Self::empty()?;
143
144      secure_array.unlock_memory();
145
146      unsafe {
147         // Copy the data from the source array into the secure memory region
148         core::ptr::copy_nonoverlapping(
149            content.as_ptr(),
150            secure_array.ptr.as_ptr(),
151            LENGTH,
152         );
153      }
154
155      let (encrypted, locked) = secure_array.lock_memory();
156
157      #[cfg(feature = "use_os")]
158      if !locked {
159         return Err(Error::LockFailed);
160      }
161
162      #[cfg(feature = "use_os")]
163      if !encrypted {
164         return Err(Error::CryptProtectMemoryFailed);
165      }
166
167      Ok(secure_array)
168   }
169
170   pub fn len(&self) -> usize {
171      LENGTH
172   }
173
174   pub fn is_empty(&self) -> bool {
175      self.len() == 0
176   }
177
178   pub fn as_ptr(&self) -> *const T {
179      self.ptr.as_ptr()
180   }
181
182   pub fn as_mut_ptr(&mut self) -> *mut u8 {
183      self.ptr.as_ptr() as *mut u8
184   }
185
186   #[allow(dead_code)]
187   fn aligned_size(&self) -> usize {
188      let size = self.len() * mem::size_of::<T>();
189      #[cfg(feature = "use_os")]
190      {
191         unsafe { page_aligned_size(size) }
192      }
193      #[cfg(not(feature = "use_os"))]
194      {
195         size // No page alignment in no_std
196      }
197   }
198
199   #[cfg(all(feature = "use_os", windows))]
200   fn encypt_memory(&self) -> bool {
201      let ptr = self.as_ptr() as *mut u8;
202      super::crypt_protect_memory(ptr, self.aligned_size())
203   }
204
205   #[cfg(all(feature = "use_os", windows))]
206   fn decrypt_memory(&self) -> bool {
207      let ptr = self.as_ptr() as *mut u8;
208      super::crypt_unprotect_memory(ptr, self.aligned_size())
209   }
210
211   pub(crate) fn lock_memory(&self) -> (bool, bool) {
212      #[cfg(feature = "use_os")]
213      {
214         #[cfg(windows)]
215         {
216            let encrypt_ok = self.encypt_memory();
217            let mprotect_ok = super::mprotect(self.ptr, Prot::NoAccess);
218            (encrypt_ok, mprotect_ok)
219         }
220         #[cfg(unix)]
221         {
222            let mprotect_ok = super::mprotect(self.ptr, Prot::NoAccess);
223            (true, mprotect_ok)
224         }
225      }
226      #[cfg(not(feature = "use_os"))]
227      {
228         (true, true) // No-op: always "succeeds"
229      }
230   }
231
232   pub(crate) fn unlock_memory(&self) -> (bool, bool) {
233      #[cfg(feature = "use_os")]
234      {
235         #[cfg(windows)]
236         {
237            let mprotect_ok = super::mprotect(self.ptr, Prot::ReadWrite);
238            if !mprotect_ok {
239               return (false, false);
240            }
241            let decrypt_ok = self.decrypt_memory();
242            (decrypt_ok, mprotect_ok)
243         }
244         #[cfg(unix)]
245         {
246            let mprotect_ok = super::mprotect(self.ptr, Prot::ReadWrite);
247            (true, mprotect_ok)
248         }
249      }
250
251      #[cfg(not(feature = "use_os"))]
252      {
253         (true, true) // No-op: always "succeeds"
254      }
255   }
256
257   /// Immutable access to the array's data as a `&[T]`
258   pub fn unlock<F, R>(&self, f: F) -> R
259   where
260      F: FnOnce(&[T]) -> R,
261   {
262      self.unlock_memory();
263      let slice = unsafe { core::slice::from_raw_parts(self.ptr.as_ptr(), LENGTH) };
264      let result = f(slice);
265      self.lock_memory();
266      result
267   }
268
269   /// Mutable access to the array's data as a `&mut [T]`
270   pub fn unlock_mut<F, R>(&mut self, f: F) -> R
271   where
272      F: FnOnce(&mut [T]) -> R,
273   {
274      self.unlock_memory();
275      let slice = unsafe { core::slice::from_raw_parts_mut(self.ptr.as_ptr(), LENGTH) };
276      let result = f(slice);
277      self.lock_memory();
278      result
279   }
280
281   /// Securely erases the contents of the array by zeroizing the memory.
282   pub fn erase(&mut self) {
283      self.unlock_mut(|slice| {
284         for element in slice.iter_mut() {
285            element.zeroize();
286         }
287      });
288   }
289}
290
291impl<T: Zeroize, const LENGTH: usize> core::ops::Index<usize> for SecureArray<T, LENGTH> {
292   type Output = T;
293   fn index(&self, index: usize) -> &Self::Output {
294      assert!(index < self.len(), "Index out of bounds");
295      unsafe {
296         let ptr = self.ptr.as_ptr().add(index);
297         &*ptr
298      }
299   }
300}
301
302impl<T: Zeroize, const LENGTH: usize> core::ops::IndexMut<usize> for SecureArray<T, LENGTH> {
303   fn index_mut(&mut self, index: usize) -> &mut Self::Output {
304      assert!(index < self.len(), "Index out of bounds");
305      unsafe {
306         let ptr = self.ptr.as_ptr().add(index);
307         &mut *ptr
308      }
309   }
310}
311
312impl<T: Zeroize, const LENGTH: usize> Drop for SecureArray<T, LENGTH> {
313   fn drop(&mut self) {
314      self.erase();
315      self.unlock_memory();
316
317      let size = LENGTH * mem::size_of::<T>();
318      if size == 0 {
319         return;
320      }
321
322      #[cfg(feature = "use_os")]
323      free(self.ptr);
324
325      #[cfg(not(feature = "use_os"))]
326      {
327         let layout = Layout::from_size_align_unchecked(size, mem::align_of::<T>());
328         dealloc(self.ptr.as_ptr() as *mut u8, layout);
329      }
330   }
331}
332
333impl<T: Clone + Zeroize, const LENGTH: usize> Clone for SecureArray<T, LENGTH> {
334   fn clone(&self) -> Self {
335      let mut new_array = Self::empty().unwrap();
336      self.unlock(|src_slice| {
337         new_array.unlock_mut(|dest_slice| {
338            dest_slice.clone_from_slice(src_slice);
339         });
340      });
341      new_array
342   }
343}
344
345impl<const LENGTH: usize> TryFrom<SecureVec<u8>> for SecureArray<u8, LENGTH> {
346   type Error = Error;
347
348   /// Tries to convert a `SecureVec<u8>` into a `SecureArray<u8, LENGTH>`.
349   ///
350   /// This operation will only succeed if `vec.len() == LENGTH`.
351   ///
352   /// The `SecureVec` is consumed.
353   fn try_from(vec: SecureVec<u8>) -> Result<Self, Self::Error> {
354      if vec.len() != LENGTH {
355         return Err(Error::LengthMismatch);
356      }
357
358      let mut new_array = Self::empty()?;
359
360      vec.unlock_slice(|vec_slice| {
361         new_array.unlock_mut(|array_slice| {
362            array_slice.copy_from_slice(vec_slice);
363         });
364      });
365
366      Ok(new_array)
367   }
368}
369
370#[cfg(feature = "serde")]
371impl<const LENGTH: usize> serde::Serialize for SecureArray<u8, LENGTH> {
372   fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
373   where
374      S: serde::Serializer,
375   {
376      self.unlock(|slice| serializer.collect_seq(slice.iter()))
377   }
378}
379
380#[cfg(feature = "serde")]
381impl<'de, const LENGTH: usize> serde::Deserialize<'de> for SecureArray<u8, LENGTH> {
382   fn deserialize<D>(deserializer: D) -> Result<SecureArray<u8, LENGTH>, D::Error>
383   where
384      D: serde::Deserializer<'de>,
385   {
386      struct SecureArrayVisitor<const L: usize>;
387
388      impl<'de, const L: usize> serde::de::Visitor<'de> for SecureArrayVisitor<L> {
389         type Value = SecureArray<u8, L>;
390
391         fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
392            write!(formatter, "a byte array of length {}", L)
393         }
394
395         fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
396         where
397            A: serde::de::SeqAccess<'de>,
398         {
399            let mut data: SecureVec<u8> =
400               SecureVec::new_with_capacity(L).map_err(serde::de::Error::custom)?;
401            while let Some(byte) = seq.next_element()? {
402               data.push(byte);
403            }
404
405            // Check that the deserialized data has the exact length required.
406            if data.len() != L {
407               return Err(serde::de::Error::invalid_length(
408                  data.len(),
409                  &self,
410               ));
411            }
412
413            SecureArray::try_from(data).map_err(serde::de::Error::custom)
414         }
415      }
416
417      deserializer.deserialize_bytes(SecureArrayVisitor::<LENGTH>)
418   }
419}
420
421#[cfg(all(test, feature = "use_os"))]
422mod tests {
423   use super::*;
424   use std::process::{Command, Stdio};
425   use std::sync::{Arc, Mutex};
426
427   #[test]
428   fn test_creation() {
429      let exposed_mut = &mut [1, 2, 3];
430      let array: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed_mut).unwrap();
431      assert_eq!(array.len(), 3);
432
433      array.unlock(|slice| {
434         assert_eq!(slice, &[1, 2, 3]);
435      });
436
437      assert_eq!(exposed_mut, &[0u8; 3]);
438
439      let exposed = &[1, 2, 3];
440      let array: SecureArray<u8, 3> = SecureArray::from_slice(exposed).unwrap();
441      assert_eq!(array.len(), 3);
442
443      array.unlock(|slice| {
444         assert_eq!(slice, &[1, 2, 3]);
445      });
446
447      assert_eq!(exposed, &[1, 2, 3]);
448   }
449
450   #[test]
451   fn test_from_secure_vec() {
452      let vec: SecureVec<u8> = SecureVec::from_slice(&[1, 2, 3]).unwrap();
453      let array: SecureArray<u8, 3> = vec.try_into().unwrap();
454      assert_eq!(array.len(), 3);
455      array.unlock(|slice| {
456         assert_eq!(slice, &[1, 2, 3]);
457      });
458   }
459
460   #[test]
461   fn test_erase() {
462      let exposed: &mut [u8; 3] = &mut [1, 2, 3];
463      let mut array: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed).unwrap();
464      array.erase();
465      array.unlock(|slice| {
466         assert_eq!(slice, &[0u8; 3]);
467      });
468   }
469
470   #[test]
471   fn test_size_cannot_be_zero() {
472      let secure: SecureArray<u8, 3> = SecureArray::from_slice(&[1, 2, 3]).unwrap();
473      let size = secure.aligned_size();
474      assert_eq!(size > 0, true);
475
476      let secure: SecureArray<u8, 3> = SecureArray::empty().unwrap();
477      let size = secure.aligned_size();
478      assert_eq!(size > 0, true);
479   }
480
481   #[test]
482   #[should_panic]
483   fn test_length_cannot_be_zero() {
484      let secure_vec = SecureVec::new().unwrap();
485      let _secure_array: SecureArray<u8, 0> = SecureArray::try_from(secure_vec).unwrap();
486   }
487
488   #[test]
489   fn lock_unlock() {
490      let exposed: &mut [u8; 3] = &mut [1, 2, 3];
491      let secure: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed).unwrap();
492      let size = secure.aligned_size();
493      assert_eq!(size > 0, true);
494
495      let (decrypted, unlocked) = secure.unlock_memory();
496      assert!(decrypted);
497      assert!(unlocked);
498
499      let (encrypted, locked) = secure.lock_memory();
500      assert!(encrypted);
501      assert!(locked);
502   }
503
504   #[test]
505   fn test_clone() {
506      let mut array1: SecureArray<u8, 3> = SecureArray::empty().unwrap();
507      array1.unlock_mut(|slice| {
508         slice[0] = 1;
509         slice[1] = 2;
510         slice[2] = 3;
511      });
512
513      let array2 = array1.clone();
514
515      array2.unlock(|slice| {
516         assert_eq!(slice, &[1, 2, 3]);
517      });
518
519      array1.unlock(|slice| {
520         assert_eq!(slice, &[1, 2, 3]);
521      });
522   }
523
524   #[test]
525   fn test_thread_safety() {
526      let exposed: &mut [u8; 3] = &mut [1, 2, 3];
527      let array: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed).unwrap();
528      let arc_array = Arc::new(Mutex::new(array));
529      let mut handles = Vec::new();
530
531      for _ in 0..5u8 {
532         let array_clone = Arc::clone(&arc_array);
533         let handle = std::thread::spawn(move || {
534            let mut guard = array_clone.lock().unwrap();
535            guard.unlock_mut(|slice| {
536               slice[0] += 1;
537            });
538         });
539         handles.push(handle);
540      }
541
542      for handle in handles {
543         handle.join().unwrap();
544      }
545
546      let final_array = arc_array.lock().unwrap();
547      final_array.unlock(|slice| {
548         assert_eq!(slice[0], 6);
549         assert_eq!(slice[1], 2);
550         assert_eq!(slice[2], 3);
551      });
552   }
553
554   #[test]
555   fn test_index_should_fail_when_locked() {
556      let arg = "CRASH_TEST_ARRAY_LOCKED";
557
558      if std::env::args().any(|a| a == arg) {
559         let exposed: &mut [u8; 3] = &mut [1, 2, 3];
560         let array: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed).unwrap();
561         let _value = core::hint::black_box(array[0]);
562
563         std::process::exit(1);
564      }
565
566      let child = Command::new(std::env::current_exe().unwrap())
567         .arg("array::tests::test_index_should_fail_when_locked")
568         .arg(arg)
569         .arg("--nocapture")
570         .stdout(Stdio::piped())
571         .stderr(Stdio::piped())
572         .spawn()
573         .expect("Failed to spawn child process");
574
575      let output = child.wait_with_output().expect("Failed to wait on child");
576      let status = output.status;
577
578      assert!(
579         !status.success(),
580         "Process exited successfully with code {:?}, but it should have crashed.",
581         status.code()
582      );
583
584      #[cfg(unix)]
585      {
586         use std::os::unix::process::ExitStatusExt;
587         let signal = status
588            .signal()
589            .expect("Process was not terminated by a signal on Unix.");
590         assert!(
591            signal == libc::SIGSEGV || signal == libc::SIGBUS,
592            "Process terminated with unexpected signal: {}",
593            signal
594         );
595         println!(
596            "Test passed: Process correctly terminated with signal {}.",
597            signal
598         );
599      }
600
601      #[cfg(windows)]
602      {
603         const STATUS_ACCESS_VIOLATION: i32 = 0xC0000005_u32 as i32;
604         assert_eq!(
605            status.code(),
606            Some(STATUS_ACCESS_VIOLATION),
607            "Process exited with unexpected code: {:x?}. Expected STATUS_ACCESS_VIOLATION.",
608            status.code()
609         );
610         eprintln!("Test passed: Process correctly terminated with STATUS_ACCESS_VIOLATION.");
611      }
612   }
613
614   #[test]
615   fn test_unlock_mut() {
616      let exposed: &mut [u8; 3] = &mut [1, 2, 3];
617      let mut array: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed).unwrap();
618
619      array.unlock_mut(|slice| {
620         slice[1] = 100;
621      });
622
623      array.unlock(|slice| {
624         assert_eq!(slice, &[1, 100, 3]);
625      });
626   }
627
628   #[cfg(feature = "serde")]
629   #[test]
630   fn test_serde() {
631      let exposed: &mut [u8; 3] = &mut [1, 2, 3];
632      let array: SecureArray<u8, 3> = SecureArray::from_slice_mut(exposed).unwrap();
633      let json_string = serde_json::to_string(&array).expect("Serialization failed");
634      let json_bytes = serde_json::to_vec(&array).expect("Serialization failed");
635
636      let deserialized_string: SecureArray<u8, 3> =
637         serde_json::from_str(&json_string).expect("Deserialization failed");
638
639      let deserialized_bytes: SecureArray<u8, 3> =
640         serde_json::from_slice(&json_bytes).expect("Deserialization failed");
641
642      deserialized_string.unlock(|slice| {
643         assert_eq!(slice, &[1, 2, 3]);
644      });
645
646      deserialized_bytes.unlock(|slice| {
647         assert_eq!(slice, &[1, 2, 3]);
648      });
649   }
650}