1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
//! An allocator designed to handle security sensitive allocations, i.e. heap
//! memory with confidential contents.
//!
//! This can be used to store e.g. passwords and secret cryptographic keys in
//! memory. It is not designed to be performant or light on system resources.
//!
//! The allocator tries to never get swapped out using `mlock` on linux. The
//! amount of memory that can be `mlock`ed is very limited for unprivileged
//! processes so use with care. Allocating too much memory using this allocator
//! (exceeding the `mlock` limit) causes the program to OOM abort using
//! [`alloc::alloc::handle_alloc_error`]. A process with `CAP_SYS_RESOURCE` can
//! change the `mlock` limit using `setrlimit` from libc (available in rust
//! through the `secmem-proc` crate).
//!
//! Various security measures are implemented:
//! - Zeroization of memory on drop.
//! - Non-swappable locked memory.
//! - Memory is not in the program break or global allocator memory pool,
//! therefore at a less predictable address (even when the address to memory
//! in the global allocator leaks). This *could* make some exploits harder,
//! but not impossible.
use crate::allocator_api::{AllocError, Allocator};
use crate::internals::mem;
use crate::util::{
align_up_ptr_mut, align_up_usize, is_aligned_ptr, large_offset_from, nonnull_as_mut_ptr,
unlikely,
};
use crate::zeroize::{DefaultMemZeroizer, MemZeroizer};
use core::alloc::Layout;
use core::cell::Cell;
use core::ptr::{self, NonNull};
use mirai_annotations::debug_checked_precondition;
#[cfg(not(feature = "nightly_strict_provenance"))]
use sptr::Strict;
/// Memory allocator for confidential memory. See the module level
/// documentation.
///
/// Memory allocator which is backed by a single page of memory. Allocation
/// works like in a bump allocator. This is very efficient for stacked
/// allocations, i.e. a latter allocation drops before an earlier allocation. If
/// allocations are deallocated in a different order, then memory can not be
/// reused until everything is deallocated.
///
/// Since the allocator is backed by a single page, only 4 KiB of memory (on
/// Linux with default configuration) can be allocated with a single. Exceeding
/// this limit causes the allocator to error on allocation requests!
///
/// This is not a zero sized type and should not be dropped before all it's
/// memory is deallocated. The same allocator instance must be used for
/// allocation and deallocation.
///
/// # Panics
/// If debug assertions are enabled, *some* of the safety requirement for using
/// the allocator are checked. In addition, memory leaks are then checked (at
/// drop). Therefore, memory allocated with this allocated should not leak!
///
/// # Errors
/// Allocation functions return errors when the requested allocation does not
/// fit what is left of the backing page of memory. In addition, zero sized
/// allocations are not allowed (but cause only an allocation error, no UB like
/// with `GlobalAlloc`).
///
/// # Memory fragmentation
/// This allocator is basically a bump allocator, and hence suffers from memory
/// fragmentation: memory can only be reused once all allocations are
/// deallocated, or if the allocator is used in a strictly (first-in last-out)
/// stack like manner with at most 8 byte aligned allocations. When
/// the allocator is used for a bunch of allocations which need to live for
/// approximately the same lifetime memory fragmentation is not an issue.
/// Otherwise, it might be a good idea to use the allocation in a filo stack
/// like manner, that is, always only deallocate, shrink or grow the
/// last created allocation, and request at most 8 byte alignment for all but
/// the first allocation.
pub struct SecStackSinglePageAlloc<Z: MemZeroizer = DefaultMemZeroizer> {
/// Zeroizer used on deallocation.
zeroizer: Z,
/// The number of bytes currently allocated.
bytes: Cell<usize>,
/// Page of allocated mlocked memory.
page: mem::Page,
// /// Top of the stack, i.e. pointer to the first byte of available memory.
// stack_ptr: Cell<NonNull<u8>>,
/// Top of the stack, i.e. offset to the first byte of available memory.
///
/// This is at most the page size.
/// Page size always fits an `isize` so this can safely be cast to an
/// `isize`.
// SAFETY INVARIANT: always a multiple of 8
// SAFETY INVARIANT: at most page size (`self.page.page_size()`)
stack_offset: Cell<usize>,
}
impl<Z: MemZeroizer> SecStackSinglePageAlloc<Z> {
#[cfg(test)]
/// Panic on inconsistent internal state.
fn consistency_check(&self) {
let bytes = self.bytes.get();
let stack_offset = self.stack_offset.get();
assert!(
stack_offset % 8 == 0,
"safety critical SecStackSinglePageAlloc invariant: offset alignment"
);
assert!(
stack_offset <= self.page.page_size(),
"safety critical SecStackSinglePageAlloc invariant: offset in page size"
);
assert!(
is_aligned_ptr(self.page.as_ptr(), 8),
"safety critical SecStackSinglePageAlloc invariant: page alignment"
);
assert!(
bytes <= stack_offset,
"critical SecStackSinglePageAlloc consistency: allocated bytes in offset"
);
assert!(
bytes % 8 == 0,
"SecStackSinglePageAlloc consistency: allocated bytes 8 multiple"
);
}
}
#[cfg(debug_assertions)]
impl<Z: MemZeroizer> Drop for SecStackSinglePageAlloc<Z> {
// panic in drop leads to abort, so we better just abort
// however, abort is only stably available with `std` (not `core`)
#[cfg(featue = "std")]
fn drop(&mut self) {
// check for leaks
if self.bytes.get() != 0 {
std::process::abort();
}
// check that the entire page contains only zeroized memory
let page_ptr: *const u8 = self.page.as_ptr();
for offset in 0..self.page.page_size() {
// SAFETY: `page_ptr + offset` still points into the memory page, but `offset`
// doesn't necessarily fit `isize` so we have to use `wrapping_add`
let byte = unsafe { page_ptr.wrapping_add(offset).read() };
if byte != 0 {
std::process::abort();
}
}
}
#[cfg(not(featue = "std"))]
fn drop(&mut self) {
// check for leaks
debug_assert!(self.bytes.get() == 0);
// check that the entire page contains only zeroized memory
let page_ptr: *const u8 = self.page.as_ptr();
for offset in 0..self.page.page_size() {
// SAFETY: `page_ptr + offset` still points into the memory page, but `offset`
// doesn't necessarily fit `isize` so we have to use `wrapping_add`
let byte = unsafe { page_ptr.wrapping_add(offset).read() };
assert!(byte == 0);
}
}
}
#[cfg(any(unix, windows))]
impl<Z: MemZeroizer> SecStackSinglePageAlloc<Z> {
/// Create a new `SecStackSinglePageAlloc` allocator. This allocates one
/// page of memory to be used by the allocator. This page is only
/// released once the allocator is dropped.
///
/// # Errors
/// The function returns an `PageAllocError` if no page could be allocated
/// by the system or if the page could not be locked. The second can be
/// caused either by memory starvation of the system or the process
/// exceeding the amount of memory it is allowed to lock.
///
/// For unprivileged processes amount of memory that locked is very limited
/// on Linux. A process with `CAP_SYS_RESOURCE` can change the `mlock`
/// limit using `setrlimit` from libc.
pub fn new_with_zeroizer(zeroizer: Z) -> Result<Self, mem::PageAllocError> {
let page = mem::Page::alloc_new_lock()?;
//let stack_ptr = page.page_ptr_nonnull();
Ok(Self {
zeroizer,
bytes: Cell::new(0),
page,
//stack_ptr,
stack_offset: Cell::new(0),
})
}
}
#[cfg(any(unix, windows))]
impl<Z: MemZeroizer + Default> SecStackSinglePageAlloc<Z> {
/// Create a new `SecStackSinglePageAlloc` allocator. This allocates one
/// page of memory to be used by the allocator. This page is only
/// released once the allocator is dropped.
///
/// # Errors
/// The function returns an `PageAllocError` if no page could be allocated
/// by the system or if the page could not be locked. The second can be
/// caused either by memory starvation of the system or the process
/// exceeding the amount of memory it is allowed to lock.
///
/// For unprivileged processes amount of memory that locked is very limited
/// on Linux. A process with `CAP_SYS_RESOURCE` can change the `mlock`
/// limit using `setrlimit` from libc.
pub fn new() -> Result<Self, mem::PageAllocError> {
Self::new_with_zeroizer(Z::default())
}
}
impl<Z: MemZeroizer> SecStackSinglePageAlloc<Z> {
/// Returns `true` iff `ptr` points to the final allocation on the memory
/// page of `self`.
///
/// # SAFETY
/// This function cannot cause UB on it's own but for the result to be
/// correct and the function not to panic, the following statements must
/// hold:
/// - `ptr` must have been allocated with the allocator `self`
/// - `rounded_size` must be a size fitting the allocation pointed to by
/// `ptr` and must be a multiple of 8 (note that allocation sizes are
/// always a multiple of 8)
///
/// In addition, `rounded_size` must be the maximal value satisfying the
/// second point. If this cannot be assured then the result can be
/// `false` even if the allocation pointed to by `ptr` is actually the
/// final allocation.
fn ptr_is_last_allocation(&self, ptr: NonNull<u8>, rounded_size: usize) -> bool {
// SAFETY: this doesn't overflow as `ptr` was returned by a previous allocation
// request so lies in our memory page, so `ptr` is larger than the page
// pointer
let alloc_start_offset = unsafe { large_offset_from(ptr.as_ptr(), self.page.as_ptr()) };
// this doesn't overflow since `rounded_size` fits the allocation pointed to by
// `ptr`
let alloc_end_offset = alloc_start_offset + rounded_size;
// `alloc_end_offset` is the stack offset directly after it's allocation
alloc_end_offset == self.stack_offset.get()
}
/// Create a zero-sized allocation.
///
/// # Safety
/// `align` must be a power of 2
#[must_use]
pub unsafe fn allocate_zerosized(align: usize) -> NonNull<[u8]> {
debug_checked_precondition!(align.is_power_of_two());
// SAFETY: creating a pointer is safe, using it not; `dangling` is non-null
let dangling: *mut u8 = sptr::invalid_mut(align);
let zerosized_slice: *mut [u8] = ptr::slice_from_raw_parts_mut(dangling, 0);
// SAFETY: zerosized_slice has a non-null pointer part since `align` > 0
unsafe { NonNull::new_unchecked(zerosized_slice) }
}
/// Reallocate allocation into a smaller one.
///
/// This won't try to reuse the existing allocation but forces a new
/// allocation. Useful if the existing allocation e.g. doesn't have the
/// correct alignment.
///
/// [`Self::shrink`] falls back to this function if the current allocation
/// cannot be reused.
///
/// # Safety
/// Safety contract of this function is identical to that of
/// [`Allocator::shrink`].
pub unsafe fn realloc_shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// like the default implementation of `Allocator::shrink` in the standard
// library
debug_checked_precondition!(
new_layout.size() <= old_layout.size(),
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
);
let new_ptr = self.allocate(new_layout)?;
// SAFETY: because `new_layout.size()` must be lower than or equal to
// `old_layout.size()`, both the old and new memory allocation are valid for
// reads and writes for `new_layout.size()` bytes. Also, because the old
// allocation wasn't yet deallocated, it cannot overlap `new_ptr`. Thus,
// the call to `copy_nonoverlapping` is safe. The safety contract for
// `dealloc` must be upheld by the caller.
unsafe {
ptr::copy_nonoverlapping(ptr.as_ptr(), nonnull_as_mut_ptr(new_ptr), new_layout.size());
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
}
/// Reallocate allocation into a larger one.
///
/// This won't try to reuse the existing allocation but forces a new
/// allocation. Useful if the existing allocation e.g. doesn't have the
/// correct alignment, or is not the last one on the memory page.
///
/// [`Self::grow`] and [`Self::grow_zeroed`] fall back to this function if
/// the current allocation cannot be reused.
///
/// # Safety
/// Safety contract of this function is identical to that of
/// [`Allocator::grow`].
pub unsafe fn realloc_grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// like the default implementation of `Allocator::grow` in the standard library
debug_checked_precondition!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
);
let new_ptr = self.allocate(new_layout)?;
// SAFETY: because `new_layout.size()` must be greater than or equal to
// `old_layout.size()`, both the old and new memory allocation are valid for
// reads and writes for `old_layout.size()` bytes. Also, because the old
// allocation wasn't yet deallocated, it cannot overlap `new_ptr`. Thus,
// the call to `copy_nonoverlapping` is safe. The safety contract for
// `dealloc` must be upheld by the caller.
unsafe {
ptr::copy_nonoverlapping(ptr.as_ptr(), nonnull_as_mut_ptr(new_ptr), old_layout.size());
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
}
}
unsafe impl<Z: MemZeroizer> Allocator for SecStackSinglePageAlloc<Z> {
// The backing memory is zeroed on deallocation and `mmap` initialises the
// memory with zeros so every allocation has zeroed memory.
// We always return a multiple of 8 bytes and a minimal alignment of 8. This
// allows for fast zeroization and reduces the chance for (external) memory
// fragmentation, at the cost of increased internal memory fragmentation.
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
debug_checked_precondition!(layout.align().is_power_of_two());
// catch zero sized allocations immediately so we do not have to bother with
// them
if layout.size() == 0 {
// SAFETY: `layout.align()` is a power of 2 since that is required by the
// `Layout` type
return Ok(unsafe { Self::allocate_zerosized(layout.align()) });
}
// if rounding up to a multiple of 8 wraps a usize, the result will be 0 and
// layout clearly doesn't fit our page, so we return an error
let rounded_req_size = layout.size().wrapping_add(7usize) & !7usize;
if unlikely(rounded_req_size == 0) {
return Err(AllocError);
}
// error if we do not have enough space for this allocation
if rounded_req_size > self.page.page_size() - self.stack_offset.get() {
return Err(AllocError);
}
// SAFETY: `self.stack_offset` is at most the page size so fits an `isize` and
// the addition does not wrap.
// SAFETY: `self.stack_offset` is at most the page size so the result of `add`
// still points into the mapped memory page or one byte after it
// SAFETY: hence the use of `add` is sound
let stack_ptr: *mut u8 = unsafe { self.page.as_ptr_mut().add(self.stack_offset.get()) };
// also the pointer is 8 byte aligned since `self.stack_offset` is a multiple of
// 8 and the page pointer is page aligned, so also 8 byte aligned
// we use a minimum alignment of 8 since this allows a fast path for many
// zeroizers and reduces external memory fragmentation
if layout.align() <= 8 {
// fast path for low align
debug_assert!(
layout.align() == 1
|| layout.align() == 2
|| layout.align() == 4
|| layout.align() == 8
);
let alloc_slice_ptr: *mut [u8] =
ptr::slice_from_raw_parts_mut(stack_ptr, rounded_req_size);
// SAFETY: the page pointer is nonnull and the addition doesn't wrap so the
// result is nonnull
let alloc_slice_ptr: NonNull<[u8]> = unsafe { NonNull::new_unchecked(alloc_slice_ptr) };
// SAFETY: rounded_req_size is a multiple of 8 (by rounding) so that
// `self.stack_offset` stays a multiple of 8
self.stack_offset
.set(self.stack_offset.get() + rounded_req_size);
self.bytes.set(self.bytes.get() + rounded_req_size);
Ok(alloc_slice_ptr)
} else {
// slower path for large align
// first pointer >= `stack_ptr` which is `layout.align()` bytes aligned
// SAFETY: `layout.align()` is a power of 2
let next_aligned_ptr = unsafe { align_up_ptr_mut(stack_ptr, layout.align()) };
// if this wraps the address space, then the result is null and the layout
// doesn't fit the remaining memory of our page, so error
if unlikely(next_aligned_ptr.is_null()) {
return Err(AllocError);
}
// offset of `next_align_ptr` relative from our base page pointer
// SAFETY: `next_align_ptr` is higher in the memory than `stack_ptr`
let next_align_pageoffset =
unsafe { large_offset_from(next_aligned_ptr, self.page.as_ptr()) };
// error if `next_aligned_ptr` falls outside of our page
if next_align_pageoffset >= self.page.page_size() {
return Err(AllocError);
}
// the new allocation will start at `next_aligned_ptr` and be `rounded_req_size`
// long; error if we do not have enough space for this allocation
// by the previous branch `self.page.page_size() - next_align_pageoffset` won't
// wrap (`self.page.page_size() - next_align_pageoffset` is the
// number of bytes available)
if rounded_req_size > self.page.page_size() - next_align_pageoffset {
return Err(AllocError);
}
// if we reach here then [next_aligned_ptr .. next_aligned_ptr +
// rounded_req_size] lies entirely within our memory page
let alloc_slice_ptr: *mut [u8] =
ptr::slice_from_raw_parts_mut(next_aligned_ptr, rounded_req_size);
// SAFETY: the page pointer is nonnull and the addition doesn't wrap so the
// result is nonnull
let alloc_slice_ptr: NonNull<[u8]> = unsafe { NonNull::new_unchecked(alloc_slice_ptr) };
// SAFETY: `rounded_req_size` is a multiple of 8 (by rounding) and
// `next_align_pageoffset` is so, therefore `self.stack_offset` stays a multiple
// of 8 SAFETY: `next_align_pageoffset + rounded_req_size` is the
// first offset after the currently created allocation
// (`alloc_slice_ptr`)
self.stack_offset
.set(next_align_pageoffset + rounded_req_size);
self.bytes.set(self.bytes.get() + rounded_req_size);
Ok(alloc_slice_ptr)
}
}
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
// zero initialisation doesn't come at a cost, see `allocate_zeroed`
self.allocate_zeroed(layout)
}
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
// catch zero sized allocations immediately so we do not have to bother with
// them
if layout.size() == 0 {
return;
}
// `ptr` must be returned by this allocator, so it lies in the currently used
// part of the memory page
debug_checked_precondition!(self.page.as_ptr().addr() <= ptr.as_ptr().addr());
debug_checked_precondition!(
ptr.as_ptr().addr() <= self.page.as_ptr().addr() + self.stack_offset.get()
);
// SAFETY: this `rounded_req_size` is identical to the value of
// `rounded_req_size` in `self.allocate_zeroed` when the block was first
// allocated since layout must fit the block returned by that function
// so `layout.size()` now is in the range `layout.size() ..=
// rounded_req_size` for the values back then this will be important for
// safety and correct functioning
let rounded_req_size = align_up_usize(layout.size(), 8);
// securely wipe the deallocated memory
// SAFETY: `ptr` is valid for writes of `rounded_req_size` bytes since it was
// previously successfully allocated (by the safety contract for this
// function) and not yet deallocated
// SAFETY: `ptr` is at least 8 bytes aligned and `rounded_req_size` is a
// multiple of 8
unsafe {
self.zeroizer
.zeroize_mem_blocks::<3, 3>(ptr.as_ptr(), rounded_req_size);
}
// `self.bytes - rounded_req_size` doesn't overflow since the memory has
// previously been allocated
self.bytes.set(self.bytes.get() - rounded_req_size);
// if `self.bytes` is now 0 then this was the last allocation
// hence we can reset the allocator: reset the stack offset
if self.bytes.get() == 0 {
self.stack_offset.set(0);
return;
}
// otherwise, if this allocation was the last one on the stack, rewind the stack
// offset so we can reuse the memory for later allocation requests
// SAFETY: this doesn't overflow as `ptr` was returned by a previous allocation
// request so lies in our memory page, so `ptr` is larger than the page
// pointer
let alloc_start_offset = unsafe { large_offset_from(ptr.as_ptr(), self.page.as_ptr()) };
let alloc_end_offset = alloc_start_offset + rounded_req_size;
// `alloc_end_offset` is the stack offset directly after it's allocation
if alloc_end_offset == self.stack_offset.get() {
// SAFETY: `alloc_start_offset` is a multiple of 8 since both `ptr` and the page
// pointer are 8 byte aligned
self.stack_offset.set(alloc_start_offset);
}
}
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_checked_precondition!(
new_layout.size() <= old_layout.size(),
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
);
// catch zero sized allocations immediately so we do not have to bother with
// them
if new_layout.size() == 0 {
// SAFETY: safety contract must be uphold by the caller
unsafe {
self.deallocate(ptr, old_layout);
}
// SAFETY: `layout.align()` is a power of 2 since that is required by the
// `Layout` type
return Ok(unsafe { Self::allocate_zerosized(new_layout.align()) });
}
// `ptr` must be returned by this allocator, so it lies in the currently used
// part of the memory page
debug_checked_precondition!(self.page.as_ptr().addr() <= ptr.as_ptr().addr());
debug_checked_precondition!(
ptr.as_ptr().addr() <= self.page.as_ptr().addr() + self.stack_offset.get()
);
// check whether the existing allocation has the requested alignment
if is_aligned_ptr(ptr.as_ptr(), new_layout.align()) {
// old allocation has the (new) required alignment
// we can shrink the allocation in place
// for a non-final allocation (not last allocation on the memory page) this
// unfortunately fragments memory; we could as well just not shrink, but we want
// to zeroize memory as early as possible (and guaranty zeroization)
// so we do shrink
// round old layout size to a multiple of 8, since allocation sizes are
// multiples of 8
let rounded_size: usize = align_up_usize(old_layout.size(), 8);
// if the allocation is the final allocation in our memory page, then we can
// shrink
// shrink in place
let new_rounded_size: usize = align_up_usize(new_layout.size(), 8);
// SAFETY: `ptr` points to an allocation of size at least `rounded_size`, and
// `new_rounded_size` not larger, so `ptr + new_rounded_size` still points
// inside our memory page
// SAFETY: `new_rounded_size` is a multiple of 8 and `ptr` is 8 byte aligned so
// `new_alloc_end` is so too
let new_alloc_end: *mut u8 = unsafe { ptr.as_ptr().add(new_rounded_size) };
// doesn't wrap since `old_layout.size() >= new_layout.size()`, and the
// inequality is invariant under rounding up to a multiple of 8;
// also `size_decrease` is therefore a multiple of 8
let size_decrease: usize = rounded_size - new_rounded_size;
// securely wipe the deallocated memory
// SAFETY: `new_alloc_end` is valid for writes of `rounded_size -
// new_rounded_size` bytes since it is only `new_rounded_size` past
// `ptr`, which was successfully allocated (by the safety contract
// for this function) and not yet deallocated
// SAFETY: `new_alloc_end` is at least 8 byte aligned, `size_decrease` is a
// multiple of 8
unsafe {
self.zeroizer
.zeroize_mem_blocks::<3, 3>(new_alloc_end, size_decrease);
}
// decrement the number of allocated bytes by the allocation size reduction
self.bytes.set(self.bytes.get() - size_decrease);
// if the allocation is the final allocation in our memory page, then we can
// rewind the stack offset to limit memory fragmentation
// `ptr` is allocated with `self` and `rounded_size` fits it and is a multiple
// of 8
if self.ptr_is_last_allocation(ptr, rounded_size) {
// SAFETY: `size_decrease` is a multiple of 8 so `self.stack_offset` remains so
self.stack_offset
.set(self.stack_offset.get() - size_decrease);
}
// create the pointer to the shrunken allocation
let alloc_slice_ptr: *mut [u8] =
ptr::slice_from_raw_parts_mut(ptr.as_ptr(), new_rounded_size);
// SAFETY: `ptr.as_ptr()` is nunnull by the type of `ptr`
let alloc_slice_ptr: NonNull<[u8]> = unsafe { NonNull::new_unchecked(alloc_slice_ptr) };
Ok(alloc_slice_ptr)
} else {
// wrong alignment, we have to reallocate
// SAFETY: safety contract must be uphold by the caller
unsafe { self.realloc_shrink(ptr, old_layout, new_layout) }
}
}
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_checked_precondition!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
);
// catch zero sized allocations immediately so we do not have to bother with
// them
if old_layout.size() == 0 {
// old allocation was zero sized so no need for deallocation
return self.allocate(new_layout);
}
// `ptr` must be returned by this allocator, so it lies in the currently used
// part of the memory page
debug_checked_precondition!(self.page.as_ptr().addr() <= ptr.as_ptr().addr());
debug_checked_precondition!(
ptr.as_ptr().addr() <= self.page.as_ptr().addr() + self.stack_offset.get()
);
// check whether the existing allocation has the requested alignment
if is_aligned_ptr(ptr.as_ptr(), new_layout.align()) {
// old allocation has the (new) required alignment
// if the allocation is the final allocation in our memory page, then we can
// increase the allocation in-place
// round old layout size to a multiple of 8, since allocation sizes are
// multiples of 8
let rounded_size: usize = align_up_usize(old_layout.size(), 8);
// `ptr` is allocated with `self` and `rounded_size` fits it and is a multiple
// of 8
if self.ptr_is_last_allocation(ptr, rounded_size) {
// increase allocation in-place
let new_rounded_size: usize = align_up_usize(new_layout.size(), 8);
// if this wraps the address space, then the result is 0 and the layout doesn't
// fit the remaining memory of our page, so error
if unlikely(new_rounded_size == 0) {
return Err(AllocError);
}
// SAFETY: this doesn't overflow as `ptr` was returned by a previous allocation
// request so lies in our memory page, so `ptr` is larger than
// the page pointer
let alloc_start_offset =
unsafe { large_offset_from(ptr.as_ptr(), self.page.as_ptr()) };
// if the requested allocation size doesn't fit the rest of our page, error
// the subtraction doesn't wrap since `alloc_start_offset` is the part of the
// page that is used (without counting the allocation currently
// being resized)
if new_rounded_size > self.page.page_size() - alloc_start_offset {
return Err(AllocError);
}
// if we get here then the resized allocation fits the rest of our memory page
// this doesn't wrap since `new_layout.size() >= old_layout.size()` so after
// rounding both to a multiple of 8, `new_rounded_size >= rounded_size`
// since both values are multiples of 8, `size_increase` is so too
let size_increase: usize = new_rounded_size - rounded_size;
// increase the number of allocated bytes by the allocation size increase
self.bytes.set(self.bytes.get() + size_increase);
// and the stack offset
// SAFETY: `size_increase` is a multiple of 8 so `self.stack_offset` remains so
self.stack_offset
.set(self.stack_offset.get() + size_increase);
// create the pointer to the grown allocation
let alloc_slice_ptr: *mut [u8] =
ptr::slice_from_raw_parts_mut(ptr.as_ptr(), new_rounded_size);
// SAFETY: `ptr.as_ptr()` is non-null by the type of `ptr`
let alloc_slice_ptr: NonNull<[u8]> =
unsafe { NonNull::new_unchecked(alloc_slice_ptr) };
return Ok(alloc_slice_ptr);
}
}
// if the alignment of the old allocation is not enough or the allocation is not
// the last on our memory page, then fall back to making a new
// allocation and deallocating the older SAFETY: caller must uphold
// safety contract
unsafe { self.realloc_grow(ptr, old_layout, new_layout) }
}
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: caller must uphold safety contract of `Allocator::grow_zeroed`
unsafe { self.grow_zeroed(ptr, old_layout, new_layout) }
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::zeroize::TestZeroizer;
use std::mem::drop;
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(align(16))]
struct Align16(u128);
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(align(16))]
struct ByteAlign16(u8);
#[test]
fn create_consistency() {
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
}
#[test]
fn box_allocation_8b() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Box::new_in([1u8; 8], &allocator);
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn box_allocation_9b() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Box::new_in([1u8; 9], &allocator);
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn box_allocation_zst() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Box::new_in([(); 8], &allocator);
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn multiple_box_allocations() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Box::new_in([1u8; 9], &allocator);
allocator.consistency_check();
{
let _heap_mem2 = Box::new_in([1u8; 9], &allocator);
allocator.consistency_check();
} // drop `_heap_mem2`
allocator.consistency_check();
{
let _heap_mem2prime = Box::new_in([1u8; 9], &allocator);
allocator.consistency_check();
} // drop `_heap_mem2prime`
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn multiple_box_allocations_high_align() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Box::new_in([Align16(1); 5], &allocator);
allocator.consistency_check();
{
let _heap_mem2 = Box::new_in([Align16(1); 9], &allocator);
allocator.consistency_check();
} // drop `_heap_mem2`
allocator.consistency_check();
{
let _heap_mem2prime = Box::new_in([Align16(1); 2], &allocator);
allocator.consistency_check();
} // drop `_heap_mem2prime`
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn multiple_box_allocations_mixed_align() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Box::new_in([1u8; 17], &allocator);
allocator.consistency_check();
{
let _heap_mem2 = Box::new_in([Align16(1); 9], &allocator);
allocator.consistency_check();
} // drop `_heap_mem2`
allocator.consistency_check();
{
let _heap_mem2prime = Box::new_in([Align16(1); 2], &allocator);
allocator.consistency_check();
} // drop `_heap_mem2prime`
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn many_box_allocations_mixed_align_nonstacked_drop() {
use crate::boxed::Box;
let allocator =
SecStackSinglePageAlloc::<TestZeroizer>::new().expect("allocator creation failed");
allocator.consistency_check();
{
let heap_mem1 = Box::new_in([Align16(1); 11], &allocator);
allocator.consistency_check();
let heap_mem2 = Box::new_in([ByteAlign16(1); 51], &allocator);
allocator.consistency_check();
let heap_mem3 = Box::new_in([1u8; 143], &allocator);
allocator.consistency_check();
drop(heap_mem3);
allocator.consistency_check();
let heap_mem4 = Box::new_in(ByteAlign16(1), &allocator);
allocator.consistency_check();
let heap_mem5 = Box::new_in(Align16(1), &allocator);
allocator.consistency_check();
drop(heap_mem2);
allocator.consistency_check();
drop(heap_mem1);
allocator.consistency_check();
drop(heap_mem4);
allocator.consistency_check();
drop(heap_mem5);
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn vec_allocation_9b() {
type A = SecStackSinglePageAlloc<TestZeroizer>;
let allocator: A = SecStackSinglePageAlloc::new().expect("allocator creation failed");
allocator.consistency_check();
{
let _heap_mem = Vec::<u8, _>::with_capacity_in(9, &allocator);
allocator.consistency_check();
} // drop `_heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn vec_allocation_grow_repeated() {
type A = SecStackSinglePageAlloc<TestZeroizer>;
let allocator: A = SecStackSinglePageAlloc::new().expect("allocator creation failed");
allocator.consistency_check();
{
let mut heap_mem = Vec::<u8, _>::with_capacity_in(9, &allocator);
allocator.consistency_check();
heap_mem.reserve(10);
allocator.consistency_check();
heap_mem.reserve(17);
allocator.consistency_check();
} // drop `heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn vec_allocation_nonfinal_grow() {
use crate::boxed::Box;
type A = SecStackSinglePageAlloc<TestZeroizer>;
let allocator: A = SecStackSinglePageAlloc::new().expect("allocator creation failed");
allocator.consistency_check();
{
let mut heap_mem = Vec::<u8, _>::with_capacity_in(9, &allocator);
allocator.consistency_check();
{
let _heap_mem2 = Box::new_in(37_u64, &allocator);
allocator.consistency_check();
heap_mem.reserve(10);
allocator.consistency_check();
heap_mem.reserve(17);
allocator.consistency_check();
} // drop `_heap_mem2`
allocator.consistency_check();
} // drop `heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn vec_allocation_shrink() {
type A = SecStackSinglePageAlloc<TestZeroizer>;
let allocator: A = SecStackSinglePageAlloc::new().expect("allocator creation failed");
allocator.consistency_check();
{
let mut heap_mem = Vec::<u8, _>::with_capacity_in(9, &allocator);
allocator.consistency_check();
heap_mem.push(255);
allocator.consistency_check();
heap_mem.shrink_to_fit();
allocator.consistency_check();
} // drop `heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn vec_allocation_nonfinal_shrink() {
use crate::boxed::Box;
type A = SecStackSinglePageAlloc<TestZeroizer>;
let allocator: A = SecStackSinglePageAlloc::new().expect("allocator creation failed");
allocator.consistency_check();
{
let mut heap_mem = Vec::<u8, _>::with_capacity_in(9, &allocator);
allocator.consistency_check();
{
let _heap_mem2 = Box::new_in(37_u64, &allocator);
allocator.consistency_check();
heap_mem.push(1);
allocator.consistency_check();
heap_mem.shrink_to_fit();
allocator.consistency_check();
} // drop `_heap_mem2`
allocator.consistency_check();
} // drop `heap_mem`
allocator.consistency_check();
// drop `allocator`
}
#[test]
fn allocate_zeroed() {
type A = SecStackSinglePageAlloc<TestZeroizer>;
let allocator: A = SecStackSinglePageAlloc::new().expect("allocator creation failed");
let layout = Layout::new::<[u8; 16]>();
let ptr = allocator
.allocate_zeroed(layout)
.expect("allocation failed");
for i in 0..16 {
let val: u8 = unsafe { (ptr.as_ptr() as *const u8).add(i).read() };
assert_eq!(val, 0_u8);
}
unsafe {
allocator.deallocate(ptr.cast(), layout);
}
}
}