1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
//! Functions for securely wiping memory.
//!
//! This module contains functions for securely and efficiently zeroizing
//! memory. These operations won't be optimized away be the compiler. They
//! operate on raw memory regions and can invalidate the memory for types that
//! do not have all zeros (binary) as a valid value. They should be used during
//! deallocation, because the memory is unused and the memory needs not contain
//! a value of a certain type than.
//!
//! For good general purpose memory wiping use the [`zeroize`](https://crates.io/crates/zeroize)
//! crate.
use crate::internals::zeroize as internals;
use crate::macros::{
debug_precondition_logaligned, debug_precondition_logmultiple, precondition_memory_range,
};
use crate::util::is_aligned_ptr_mut;
/// Strategy for securely erasing memory.
///
/// # Security
/// The implementor *must* ensure that the zeroize instruction won't be elided
/// by the compiler.
pub trait MemZeroizer {
/// Zeroize the memory pointed to by `ptr` and of size `len` bytes.
///
/// This is guarantied to be not elided by the compiler.
///
/// # Safety
/// The caller *must* ensure that `ptr` is valid for writes of `len` bytes,
/// see the [`std::ptr`] documentation. In particular this function is
/// not atomic.
///
/// Furthermore, `ptr` *must* be at least `2^LOG_ALIGN` byte aligned, and
/// `2^LOG_ALIGN` must fit a `usize`.
///
/// Finally `len` must be a multiple of `2^LOG_MULTIPLE`, and `2^LOG_ALIGN`
/// must fit a `usize`. (If `len` is not a multiple of `2^LOG_MULTIPLE`
/// then this won't result in UB but the memory pointed to by `ptr` might
/// only be zeroized for `len` rounded down to a multiple `2^LOG_MULTIPLE`
/// bytes, or the full `len` bytes, or anything in between, or the function
/// might panic.)
unsafe fn zeroize_mem_blocks<const LOG_ALIGN: u8, const LOG_MULTIPLE: u8>(
&self,
ptr: *mut u8,
len: usize,
);
/// Zeroize the memory pointed to by `ptr` and of size `len` bytes.
/// Shorthand for `Self::zeroize_mem_blocks::<0, 0>`.
///
/// This is guarantied to be not elided by the compiler.
///
/// # Safety
/// The caller *must* ensure that `ptr` is valid for writes of `len` bytes,
/// see the [`std::ptr`] documentation. In particular this function is
/// not atomic.
unsafe fn zeroize_mem(&self, ptr: *mut u8, len: usize) {
unsafe { self.zeroize_mem_blocks::<0, 0>(ptr, len) }
}
}
cfg_if::cfg_if! {
if #[cfg(miri)] {
// when running miri we chose a pure rust zeroizer by default
pub type DefaultMemZeroizer = VolatileWrite8Zeroizer;
pub(crate) use VolatileWrite8Zeroizer as DefaultMemZeroizerConstructor;
} else if #[cfg(feature = "nightly_core_intrinsics")] {
/// Best (i.e. fastest) [`MemZeroizer`] available for the target.
///
/// Which [`MemZeroizer`] this is is an implementation detail, can depend on the target and
/// the selected features and the version of this library.
pub type DefaultMemZeroizer = VolatileMemsetZeroizer;
pub(crate) use VolatileMemsetZeroizer as DefaultMemZeroizerConstructor;
} else if #[cfg(any(
target_os = "freebsd",
target_os = "dragonfly",
target_os = "openbsd",
target_os = "netbsd",
target_os = "macos",
target_os = "ios",
target_env = "gnu",
target_env = "musl"
))] {
/// Best (i.e. fastest) [`MemZeroizer`] available for the target.
///
/// Which [`MemZeroizer`] this is is an implementation detail, can depend on the target and
/// the selected features and the version of this library.
pub type DefaultMemZeroizer = LibcZeroizer;
pub(crate) use LibcZeroizer as DefaultMemZeroizerConstructor;
} else if #[cfg(all(target_arch = "x86_64", target_feature = "avx"))] {
/// Best (i.e. fastest) [`MemZeroizer`] available for the target.
///
/// Which [`MemZeroizer`] this is is an implementation detail, can depend on the target and
/// the selected features and the version of this library.
pub type DefaultMemZeroizer = X86_64AvxZeroizer;
pub(crate) use X86_64AvxZeroizer as DefaultMemZeroizerConstructor;
} else if #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))] {
/// Best (i.e. fastest) [`MemZeroizer`] available for the target.
///
/// Which [`MemZeroizer`] this is is an implementation detail, can depend on the target and
/// the selected features and the version of this library.
pub type DefaultMemZeroizer = X86_64Sse2Zeroizer;
pub(crate) use X86_64Sse2Zeroizer as DefaultMemZeroizerConstructor;
} else {
/// Best (i.e. fastest) [`MemZeroizer`] available for the target.
///
/// Which [`MemZeroizer`] this is is an implementation detail, can depend on the target and
/// the selected features and the version of this library.
pub type DefaultMemZeroizer = VolatileWrite8Zeroizer;
pub(crate) use VolatileWrite8Zeroizer as DefaultMemZeroizerConstructor;
}
}
#[cfg(test)]
pub(crate) use VolatileWrite8Zeroizer as TestZeroizer;
/// This zeroizer uses the volatile memset intrinsic which does not
/// yet have a stable counterpart. It should be very fast, but requires
/// nightly.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
#[cfg(feature = "nightly_core_intrinsics")]
#[derive(Debug, Copy, Clone, Default)]
pub struct VolatileMemsetZeroizer;
#[cfg(feature = "nightly_core_intrinsics")]
impl MemZeroizer for VolatileMemsetZeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
// SAFETY: the caller must uphold the safety contract of
// `internals::volatile_memset`
unsafe {
internals::volatile_memset(ptr, 0, len);
}
fence();
}
}
/// This zeroizer uses volatile zeroization functions provided by libc.
/// It should be fast but is only available on certain platforms.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
#[cfg(any(
target_os = "freebsd",
target_os = "dragonfly",
target_os = "openbsd",
target_os = "netbsd",
target_os = "macos",
target_os = "ios",
target_env = "gnu",
target_env = "musl"
))]
#[derive(Debug, Copy, Clone, Default)]
pub struct LibcZeroizer;
#[cfg(any(
target_os = "freebsd",
target_os = "dragonfly",
target_os = "openbsd",
target_os = "netbsd",
target_os = "macos",
target_os = "ios",
target_env = "gnu",
target_env = "musl"
))]
impl MemZeroizer for LibcZeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
debug_precondition_logmultiple!(B, len);
// SAFETY: the caller must uphold the safety contract of
// `internals::libc_explicit_bzero`
unsafe {
internals::libc_explicit_bzero(ptr, len);
}
fence();
}
}
/// This zeroizer uses volatile assembly (`rep stosb`) for modern x86_64,
/// performing very well for large amounts of memory. To make this available on
/// stable, it uses a C compiler at build time.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
#[cfg(all(target_arch = "x86_64", target_feature = "ermsb"))]
#[derive(Debug, Copy, Clone, Default)]
pub struct AsmRepStosZeroizer;
#[cfg(all(target_arch = "x86_64", target_feature = "ermsb"))]
impl MemZeroizer for AsmRepStosZeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
debug_precondition_logmultiple!(B, len);
// SAFETY: the caller must uphold the safety contract of
// `internals::asm_ermsb_zeroize`
unsafe {
internals::asm_ermsb_zeroize(ptr, len);
}
fence();
}
}
/// This zeroizer uses a volatile write per byte. This zeroization technique is
/// similar to the `zeroize` crate, available for all target platforms on
/// stable, but extremely slow.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
#[derive(Debug, Copy, Clone, Default)]
pub struct VolatileWriteZeroizer;
impl MemZeroizer for VolatileWriteZeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
debug_precondition_logmultiple!(B, len);
// SAFETY: the caller must uphold the safety contract of
// `volatile_write_zeroize_mem`
unsafe {
internals::volatile_write_zeroize(ptr, len);
}
fence();
}
}
/// This zeroizer uses a volatile write per 8 bytes if the pointer is 8 byte
/// aligned, and otherwise uses `VolatileWriteZeroizer`. This zeroization
/// technique is available for all target platforms on stable, but not very
/// fast.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
///
/// This zeroization method can benefit (in terms of performance) from using the
/// [`MemZeroizer::zeroize_mem_blocks`] function instead of
/// [`MemZeroizer::zeroize_mem`] function if a minimum alignment is known
/// at compile time.
#[derive(Debug, Copy, Clone, Default)]
pub struct VolatileWrite8Zeroizer;
impl MemZeroizer for VolatileWrite8Zeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, mut ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
debug_precondition_logmultiple!(B, len);
// if we have 8 = 2^3 byte alignment then write 8 bytes at a time,
// otherwise byte-for-byte
if (A >= 3) | is_aligned_ptr_mut(ptr, 8) {
// SAFETY: by the above check, `ptr` is at least 8 byte aligned
// SAFETY: the other safety requirements uphold by caller
ptr = unsafe { internals::zeroize_align8_block8(ptr, len) };
if B < 3 {
unsafe { internals::zeroize_align4_tail8(ptr, len) };
}
} else {
// SAFETY: the caller must uphold the contract of `volatile_write_zeroize_mem`
unsafe {
internals::volatile_write_zeroize(ptr, len);
}
}
fence();
}
}
/// This zeroizer uses inline asm with avx2 instructions if the pointer is 32
/// byte aligned, and otherwise uses `VolatileWrite8Zeroizer`. This zeroization
/// technique is available for x86_64 platforms with avx2 cpu support on stable,
/// and reasonably fast for 32 byte aligned pointers.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
///
/// This zeroization method can benefit (in terms of performance) from using the
/// [`MemZeroizer::zeroize_mem_blocks`] function instead of
/// [`MemZeroizer::zeroize_mem`] function if a minimum alignment is known
/// at compile time.
#[cfg(all(target_arch = "x86_64", target_feature = "avx"))]
#[derive(Debug, Copy, Clone, Default)]
pub struct X86_64AvxZeroizer;
#[cfg(all(target_arch = "x86_64", target_feature = "avx"))]
impl MemZeroizer for X86_64AvxZeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, mut ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
debug_precondition_logmultiple!(B, len);
// if we have 32 = 2^5 byte alignment then write 32 bytes at a time,
// with 8 = 2^3 byte align do 8 bytes at a time, otherwise 1 byte at a time
if (A >= 5) | is_aligned_ptr_mut(ptr, 32) {
// SAFETY: `ptr` is 32 byte aligned
ptr = unsafe { internals::x86_64_simd32_unroll2_zeroize_align32_block32(ptr, len) };
// zeroize tail
if B < 5 {
ptr = unsafe { internals::zeroize_align8_block8(ptr, len % 32) };
}
if B < 3 {
unsafe { internals::zeroize_align4_tail8(ptr, len % 8) };
}
} else if (A >= 3) | is_aligned_ptr_mut(ptr, 8) {
// SAFETY: `ptr` is 8 byte aligned
ptr = unsafe { internals::zeroize_align8_block8(ptr, len % 32) };
if B < 3 {
unsafe { internals::zeroize_align4_tail8(ptr, len % 8) };
}
} else {
// SAFETY: no alignment requirement
unsafe {
internals::volatile_write_zeroize(ptr, len);
}
}
fence();
}
}
/// This zeroizer uses inline asm with sse2 instructions if the pointer is 16
/// byte aligned, and otherwise uses `VolatileWrite8Zeroizer`. This zeroization
/// technique is available for x86_64 platforms with sse2 cpu support on stable,
/// and reasonably fast for 16 byte aligned pointers.
///
/// In addition to the volatile write we place a compiler fence right next to
/// the volatile write. This should not be necessary for secure zeroization
/// since the volatile semantics guarenties our writes are not elided, and they
/// can not be delayed since we are deallocating the memory after zeroization.
/// The use of this fence is therefore only a precaution.
///
/// This zeroization method can benefit (in terms of performance) from using the
/// [`MemZeroizer::zeroize_mem_blocks`] function instead of
/// [`MemZeroizer::zeroize_mem`] function if a minimum alignment is known
/// at compile time.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
#[derive(Debug, Copy, Clone, Default)]
pub struct X86_64Sse2Zeroizer;
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
impl MemZeroizer for X86_64Sse2Zeroizer {
unsafe fn zeroize_mem_blocks<const A: u8, const B: u8>(&self, mut ptr: *mut u8, len: usize) {
precondition_memory_range!(ptr, len);
debug_precondition_logaligned!(A, ptr);
debug_precondition_logmultiple!(B, len);
// if we have 16 = 2^4 byte alignment then write 16 bytes at a time,
// with 8 = 2^3 byte align do 8 bytes at a time, otherwise 1 byte at a time
if (A >= 4) | is_aligned_ptr_mut(ptr, 16) {
// SAFETY: `ptr` is 16 byte aligned
ptr = unsafe { internals::x86_64_simd16_unroll2_zeroize_align16_block16(ptr, len) };
// zeroize tail
if B < 4 {
ptr = unsafe { internals::zeroize_align8_block8(ptr, len % 16) };
}
if B < 3 {
unsafe { internals::zeroize_align4_tail8(ptr, len % 8) };
}
} else if (A >= 3) | is_aligned_ptr_mut(ptr, 8) {
// SAFETY: `ptr` is 8 byte aligned
ptr = unsafe { internals::zeroize_align8_block8(ptr, len % 16) };
if B < 3 {
unsafe { internals::zeroize_align4_tail8(ptr, len % 8) };
}
} else {
// SAFETY: no alignment requirement
unsafe {
internals::volatile_write_zeroize(ptr, len);
}
}
fence();
}
}
/// Compiler fence.
///
/// Forces sequentially consistent access across this fence at compile time. At
/// runtime the CPU can still reorder memory accesses. This should not be
/// necessary for secure zeroization since the volatile semantics guaranties our
/// writes are not elided, and they can not be delayed since we are deallocating
/// the memory after zeroization. The use of this fence is therefore only a
/// precaution. For the same reasons it probably does not add security, it also
/// probably does not hurt performance significantly.
#[inline]
fn fence() {
use core::sync::atomic::{compiler_fence, Ordering};
compiler_fence(Ordering::SeqCst);
}
#[cfg(test)]
mod tests;