1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
use super::{
utils::{generate_random_hash, hash_divide_by, hash_multiply_by},
Hashable,
};
use crate::H256Hash;
use rand::Rng;
use ring::digest::digest;
use serde::{Deserialize, Serialize};
#[derive(Clone, Copy, Default, Deserialize, Eq, Hash, PartialEq, Serialize)]
pub struct H256(pub H256Hash); impl H256 {
pub fn random() -> Self {
generate_random_hash()
}
}
impl Hashable for H256 {
fn hash(&self) -> H256 {
digest(&ring::digest::SHA256, &self.0).into()
}
}
impl std::ops::Div<f64> for H256 {
type Output = Self;
fn div(self, rhs: f64) -> Self {
hash_divide_by(&self, rhs)
}
}
impl std::ops::Mul<f64> for H256 {
type Output = Self;
fn mul(self, rhs: f64) -> Self {
hash_multiply_by(&self, rhs)
}
}
impl std::fmt::Display for H256 {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let start = if let Some(precision) = f.precision() {
if precision >= 64 {
0
} else {
32 - precision / 2
}
} else {
0
};
for byte_idx in start..32 {
write!(f, "{:>02x}", &self.0[byte_idx])?;
}
Ok(())
}
}
impl std::fmt::Debug for H256 {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"{:>02x}{:>02x}..{:>02x}{:>02x}",
&self.0[0], &self.0[1], &self.0[30], &self.0[31]
)
}
}
impl std::convert::AsRef<[u8]> for H256 {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl std::convert::From<&[u8; 32]> for H256 {
fn from(input: &[u8; 32]) -> H256 {
let mut buffer: [u8; 32] = [0; 32];
buffer[..].copy_from_slice(input);
H256(buffer)
}
}
impl std::convert::From<&H256> for [u8; 32] {
fn from(input: &H256) -> [u8; 32] {
let mut buffer: [u8; 32] = [0; 32];
buffer[..].copy_from_slice(&input.0);
buffer
}
}
impl std::convert::From<[u8; 32]> for H256 {
fn from(input: [u8; 32]) -> H256 {
H256(input)
}
}
impl std::convert::From<H256> for [u8; 32] {
fn from(input: H256) -> [u8; 32] {
input.0
}
}
impl std::convert::From<Vec<u8>> for H256 {
fn from(input: Vec<u8>) -> H256 {
let mut raw_hash: [u8; 32] = [0; 32];
raw_hash[0..32].copy_from_slice(input.as_ref());
H256(raw_hash)
}
}
impl std::convert::From<ring::digest::Digest> for H256 {
fn from(input: ring::digest::Digest) -> H256 {
let mut raw_hash: [u8; 32] = [0; 32];
raw_hash[0..32].copy_from_slice(input.as_ref());
H256(raw_hash)
}
}
impl Ord for H256 {
fn cmp(&self, other: &H256) -> std::cmp::Ordering {
let self_higher = u128::from_be_bytes(self.0[0..16].try_into().unwrap());
let self_lower = u128::from_be_bytes(self.0[16..32].try_into().unwrap());
let other_higher = u128::from_be_bytes(other.0[0..16].try_into().unwrap());
let other_lower = u128::from_be_bytes(other.0[16..32].try_into().unwrap());
let higher = self_higher.cmp(&other_higher);
match higher {
std::cmp::Ordering::Equal => self_lower.cmp(&other_lower),
_ => higher,
}
}
}
impl PartialOrd for H256 {
fn partial_cmp(&self, other: &H256) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}