1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use super::scrypt;
use crate::errors::CheckError;
use crate::ScryptParams;

use alloc::string::String;
use core::convert::TryInto;
use rand_core::RngCore;
use subtle::ConstantTimeEq;

#[cfg(not(features = "thread_rng"))]
type DefaultRng = rand_core::OsRng;
#[cfg(features = "thread_rng")]
type DefaultRng = rand::ThreadRng;

/// `scrypt_simple` is a helper function that should be sufficient for the
/// majority of cases where an application needs to use Scrypt to hash a
/// password for storage. The result is a String that contains the parameters
/// used as part of its encoding. The `scrypt_check` function may be used on
/// a password to check if it is equal to a hashed value.
///
/// # Format
/// The format of the output is a modified version of the Modular Crypt Format
/// that encodes algorithm used and the parameter values. If all parameter
/// values can each fit within a single byte, a compact format is used
/// (format 0). However, if any value cannot, an expanded format where the
/// rand `p` parameters are encoded using 4 bytes (format 1) is used. Both
/// formats use a 128-bit salt and a 256-bit hash. The format is indicated as
/// "rscrypt" which is short for "Rust Scrypt format."
///
/// `$rscrypt$<format>$<base64(log_n,r,p)>$<base64(salt)>$<based64(hash)>$`
///
/// # Arguments
/// - `password` - The password to process as a str
/// - `params` - The ScryptParams to use
///
/// # Return
/// `Ok(String)` if calculation is succesfull with the computation result.
/// It will return `io::Error` error in the case of an unlikely `OsRng` failure.
#[cfg(feature = "include_simple")]
pub fn scrypt_simple(password: &str, params: &ScryptParams) -> Result<String, rand_core::Error> {
    let mut salt = [0u8; 16];
    DefaultRng::default().try_fill_bytes(&mut salt)?;

    // 256-bit derived key
    let mut dk = [0u8; 32];

    scrypt(password.as_bytes(), &salt, params, &mut dk)
        .expect("32 bytes always satisfy output length requirements");

    // usually 128 bytes is enough
    let mut result = String::with_capacity(128);
    result.push_str("$rscrypt$");
    if params.r < 256 && params.p < 256 {
        result.push_str("0$");
        let mut tmp = [0u8; 3];
        tmp[0] = params.log_n;
        tmp[1] = params.r as u8;
        tmp[2] = params.p as u8;
        result.push_str(&base64::encode(&tmp));
    } else {
        result.push_str("1$");
        let mut tmp = [0u8; 9];
        tmp[0] = params.log_n;
        tmp[1..5].copy_from_slice(&params.r.to_le_bytes());
        tmp[5..9].copy_from_slice(&params.p.to_le_bytes());
        result.push_str(&base64::encode(&tmp));
    }
    result.push('$');
    result.push_str(&base64::encode(&salt));
    result.push('$');
    result.push_str(&base64::encode(&dk));
    result.push('$');

    Ok(result)
}

/// `scrypt_check` compares a password against the result of a previous call
/// to scrypt_simple and returns `Ok(())` if the passed in password hashes to
/// the same value, `Err(CheckError::HashMismatch)` if hashes have
/// different values, and `Err(CheckError::InvalidFormat)` if `hashed_value`
/// has an invalid format.
///
/// # Arguments
/// - password - The password to process as a str
/// - hashed_value - A string representing a hashed password returned
/// by `scrypt_simple()`
#[cfg(feature = "include_simple")]
pub fn scrypt_check(password: &str, hashed_value: &str) -> Result<(), CheckError> {
    let mut parts = hashed_value.split('$');

    let buf = [
        parts.next(),
        parts.next(),
        parts.next(),
        parts.next(),
        parts.next(),
        parts.next(),
        parts.next(),
        parts.next(),
    ];

    let (log_n, r, p, salt, hash) = match buf {
        [Some(""), Some("rscrypt"), Some("0"), Some(p), Some(s), Some(h), Some(""), None] => {
            let pvec = base64::decode(p)?;
            if pvec.len() != 3 {
                return Err(CheckError::InvalidFormat);
            }
            (pvec[0], pvec[1] as u32, pvec[2] as u32, s, h)
        }
        [Some(""), Some("rscrypt"), Some("1"), Some(p), Some(s), Some(h), Some(""), None] => {
            let pvec = base64::decode(p)?;
            if pvec.len() != 9 {
                return Err(CheckError::InvalidFormat);
            }
            let log_n = pvec[0];
            let r = u32::from_le_bytes(pvec[1..5].try_into().unwrap());
            let p = u32::from_le_bytes(pvec[5..9].try_into().unwrap());
            (log_n, r, p, s, h)
        }
        _ => return Err(CheckError::InvalidFormat),
    };

    let params = ScryptParams::new(log_n, r, p).map_err(|_| CheckError::InvalidFormat)?;
    let salt = base64::decode(salt)?;
    let hash = base64::decode(hash)?;

    let mut output = vec![0u8; hash.len()];
    scrypt(password.as_bytes(), &salt, &params, &mut output)
        .map_err(|_| CheckError::InvalidFormat)?;

    // Be careful here - its important that the comparison is done using a fixed
    // time equality check. Otherwise an adversary that can measure how long
    // this step takes can learn about the hashed value which would allow them
    // to mount an offline brute force attack against the hashed password.
    if output.ct_eq(&hash).unwrap_u8() == 1 {
        Ok(())
    } else {
        Err(CheckError::HashMismatch)
    }
}