1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
//! Utilities for tracking time

use crate::utils::game_time;
use crate::with_runtime;
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};

/// Future returned by [delay_ticks]
pub struct Delay {
    when: u32,
    timer_index: usize,
}

impl Delay {
    fn new(when: u32) -> Self {
        with_runtime(|runtime| {
            let mut timer_map = runtime.timers.try_lock().unwrap();
            let wakers = timer_map.entry(when).or_default();

            let timer_index = wakers.len();
            wakers.push(None); // Store an empty waker to ensure len() is incremented for the next delay
            Delay { when, timer_index }
        })
    }
}

impl Future for Delay {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        if game_time() >= self.when {
            return Poll::Ready(());
        }

        with_runtime(|runtime| {
            let mut timers = runtime.timers.try_lock().unwrap();

            // SAFETY: timers map gets populated before future is created and removed on final wake
            let wakers = timers.get_mut(&self.when).unwrap();

            if let Some(waker) = wakers.get_mut(self.timer_index).and_then(Option::as_mut) {
                // Waker already registered, check if it needs updating
                waker.clone_from(cx.waker());
            } else {
                // First time this future was polled, save the waker
                wakers[self.timer_index] = Some(cx.waker().clone())
            }
        });

        Poll::Pending
    }
}

/// Sleeps for `dur` game ticks.
///
/// If `dur` is zero, this function completes immediately and does not yield to the scheduler.
/// If you wish to yield execution back to the scheduler, please use [yield_now] instead
pub fn delay_ticks(dur: u32) -> Delay {
    let when = game_time() + dur;
    Delay::new(when)
}

/// Sleep until [screeps::game::time()] >= `when`
///
/// The Future returned by this function completes immediately if [screeps::game::time()] is already
/// >= `when` and does not yield to the scheduler.
pub fn delay_until(when: u32) -> Delay {
    Delay::new(when)
}

/// Delay execution until the next tick
pub async fn yield_tick() {
    delay_ticks(1).await
}

/// Yields execution back to the async runtime, but doesn't necessarily wait until next tick
/// to continue execution.
///
/// Long-running tasks that perform a significant amount of synchronous work between `.await`s
/// can prevent other tasks from being executed. In the worst case, too much synchronous work in a row
/// can consume all remaining CPU time this tick since the scheduler cannot interrupt work in the middle
/// of synchronous sections of code. To alleviate this problem, [yield_now] should be called periodically
/// to yield control back to the scheduler and give other tasks a chance to run.
pub async fn yield_now() {
    struct YieldNow {
        yielded: bool,
    }

    impl Future for YieldNow {
        type Output = ();

        fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
            if self.yielded {
                Poll::Ready(())
            } else {
                self.yielded = true;
                cx.waker().wake_by_ref();
                Poll::Pending
            }
        }
    }

    YieldNow { yielded: false }.await;
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::spawn;
    use crate::tests::game_time;
    use rstest::rstest;
    use std::cell::{OnceCell, RefCell};
    use std::rc::Rc;

    #[rstest]
    #[case(0, 0)]
    #[case(1, 1)]
    #[case(4, 4)]
    fn test_delay_ticks(#[case] dur: u32, #[case] expected: u32) {
        crate::tests::init_test();

        let has_run = Rc::new(OnceCell::new());
        {
            let has_run = has_run.clone();

            spawn(async move {
                assert_eq!(0, game_time());
                delay_ticks(dur).await;
                assert_eq!(expected, game_time());

                has_run.set(()).unwrap();
            })
            .detach();
        }

        // task hasn't run yet
        assert!(has_run.get().is_none());

        // Should complete within `dur` ticks (since we have infinite cpu time in this test)
        while game_time() <= dur {
            crate::run().unwrap();
            crate::tests::GAME_TIME.with_borrow_mut(|t| *t += 1);
        }

        // Future has been run
        assert!(has_run.get().is_some(), "Future failed to complete");
    }

    #[test]
    fn test_yield_now() {
        crate::tests::init_test();

        let steps = Rc::new(RefCell::new(Vec::new()));
        {
            let steps = steps.clone();
            spawn(async move {
                {
                    steps.borrow_mut().push(1);
                }
                yield_now().await;
                {
                    // should run after second spawn if yield_now works correctly
                    steps.borrow_mut().push(3);
                }
            })
            .detach();
        }
        {
            let steps = steps.clone();
            spawn(async move {
                steps.borrow_mut().push(2);
            })
            .detach();
        }

        crate::run().unwrap();

        let steps = steps.take();

        assert_eq!(vec![1, 2, 3], steps);
    }
}