1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
//! The Screeps Async runtime
use crate::error::RuntimeError;
use crate::job::JobHandle;
use crate::utils::{game_time, time_used};
use crate::CURRENT;
use async_task::Runnable;
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::future::Future;
use std::rc::Rc;
use std::sync::Mutex;
use std::task::Waker;
/// Builder to construct a [ScreepsRuntime]
pub struct Builder {
config: Config,
}
impl Builder {
/// Construct a new [Builder] with default settings
pub fn new() -> Self {
Self {
config: Config::default(),
}
}
/// Set what percentage of available CPU time the runtime should use per tick
pub fn tick_time_allocation(mut self, dur: f64) -> Self {
self.config.tick_time_allocation = dur;
self
}
/// Build a [ScreepsRuntime]
pub fn apply(self) {
CURRENT.with_borrow_mut(|runtime| {
*runtime = Some(ScreepsRuntime::new(self.config));
})
}
}
impl Default for Builder {
fn default() -> Self {
Self::new()
}
}
/// Configuration options for the [ScreepsRuntime]
pub struct Config {
/// Percentage of per-tick CPU time allowed to be used by the async runtime
///
/// Specifically, the runtime will continue polling new futures as long as
/// `[screeps::game::cpu::get_used] < tick_time_allocation * [screeps::game::cpu::tick_limit]`
tick_time_allocation: f64,
}
impl Default for Config {
fn default() -> Self {
Self {
tick_time_allocation: 0.9,
}
}
}
/// A very basic futures executor based on a channel. When tasks are woken, they
/// are scheduled by queuing them in the send half of the channel. The executor
/// waits on the receive half and executes received tasks.
///
/// When a task is executed, the send half of the channel is passed along via
/// the task's Waker.
pub struct ScreepsRuntime {
/// Receives scheduled tasks. When a task is scheduled, the associated future
/// is ready to make progress. This usually happens when a resource the task
/// uses becomes ready to perform an operation.
scheduled: flume::Receiver<Runnable>,
/// Send half of the scheduled channel.
sender: flume::Sender<Runnable>,
/// Stores [`Waker`]s used to wake tasks that are waiting for a specific game tick
// TODO should this really be pub(crate)?
pub(crate) timers: Rc<Mutex<TimerMap>>,
/// Config for the runtime
config: Config,
/// Mutex used to ensure you don't block_on multiple futures simultaneously
is_blocking: Mutex<()>,
}
impl ScreepsRuntime {
/// Initialize a new runtime instance.
///
/// Only one ScreepsRuntime may exist. Attempting to create a second one before the first is
/// dropped with panic
pub(crate) fn new(config: Config) -> Self {
let (sender, scheduled) = flume::unbounded();
let timers = Rc::new(Mutex::new(BTreeMap::new()));
Self {
scheduled,
sender,
timers,
config,
is_blocking: Mutex::new(()),
}
}
/// Spawn a new async task that will be polled next time the scheduler runs
pub fn spawn<F>(&self, future: F) -> JobHandle<F::Output>
where
F: Future + 'static,
{
let fut_res = Rc::new(RefCell::new(None));
let future = {
let fut_res = fut_res.clone();
async move {
let res = future.await;
let mut fut_res = fut_res.borrow_mut();
*fut_res = Some(res);
}
};
let sender = self.sender.clone();
let (runnable, task) = async_task::spawn_local(future, move |runnable| {
sender.send(runnable).unwrap();
});
runnable.schedule();
JobHandle::new(fut_res, task)
}
/// The main entrypoint for the async runtime. Runs a future to completion.
///
/// Returns [RuntimeError::DeadlockDetected] if blocking [Future] doesn't complete this tick
///
/// # Panics
///
/// Panics if another future is already being blocked on. You should `.await` the second future
/// instead.
pub fn block_on<F>(&self, future: F) -> Result<F::Output, RuntimeError>
where
F: Future + 'static,
{
let _guard = self
.is_blocking
.try_lock()
.expect("Cannot block_on multiple futures at once. Please .await on the inner future");
let handle = self.spawn(future);
while !handle.is_complete() {
if !self.try_poll_scheduled()? {
return Err(RuntimeError::DeadlockDetected);
}
}
Ok(handle.fut_res.take().unwrap())
}
/// Run the executor for one game tick
///
/// This should generally be the last thing you call in your loop as by default the runtime
/// will keep polling for work until 90% of this tick's CPU time has been exhausted.
/// Thus, with enough scheduled work, this function will run for AT LEAST 90% of the tick time
/// (90% + however long the last Future takes to poll)
pub fn run(&self) -> Result<(), RuntimeError> {
// Only need to call this once per tick since delay_ticks(0) will execute synchronously
self.wake_timers();
// Poll tasks until there are no more, or we get an error
while self.try_poll_scheduled()? {}
Ok(())
}
/// Attempts to poll the next scheduled task, ensuring that there is time left in the tick
///
/// Returns [Ok(true)] if a task was successfully polled
/// Returns [Ok(false)] if there are no tasks ready to poll
/// Returns [Err] if we have run out of allocated time this tick
pub(crate) fn try_poll_scheduled(&self) -> Result<bool, RuntimeError> {
if time_used() > self.config.tick_time_allocation {
return Err(RuntimeError::OutOfTime);
}
if let Ok(runnable) = self.scheduled.try_recv() {
runnable.run();
Ok(true)
} else {
Ok(false)
}
}
fn wake_timers(&self) {
let game_time = game_time();
let mut timers = self.timers.try_lock().unwrap();
let to_fire = {
// Grab timers that are still in the future. `timers` is now all timers that need firing
let mut pending = timers.split_off(&(game_time + 1));
// Switcheroo pending/timers so that `timers` is all timers that are scheduled in the future
std::mem::swap(&mut pending, &mut timers);
pending
};
to_fire
.into_values()
.flatten()
.flatten()
.for_each(Waker::wake);
}
}
type TimerMap = BTreeMap<u32, Vec<Option<Waker>>>;
#[cfg(test)]
mod tests {
use super::*;
use crate::error::RuntimeError::OutOfTime;
use crate::tests::*;
use crate::time::yield_now;
use crate::{spawn, with_runtime};
use std::cell::OnceCell;
#[test]
fn test_block_on() {
init_test();
let res = crate::block_on(async move {
yield_now().await;
1 + 2
})
.unwrap();
assert_eq!(3, res);
}
#[test]
fn test_spawn() {
init_test();
drop(spawn(async move {}));
with_runtime(|runtime| {
runtime
.scheduled
.try_recv()
.expect("Failed to schedule task");
})
}
#[test]
fn test_run() {
init_test();
let has_run = Rc::new(OnceCell::new());
{
let has_run = has_run.clone();
spawn(async move {
has_run.set(()).unwrap();
})
.detach();
}
// task hasn't run yet
assert!(has_run.get().is_none());
crate::run().unwrap();
// Future has been run
assert!(has_run.get().is_some());
}
#[test]
fn test_nested_spawn() {
init_test();
let has_run = Rc::new(OnceCell::new());
{
let has_run = has_run.clone();
spawn(async move {
let result = spawn(async move { 1 + 2 }).await;
assert_eq!(3, result);
has_run.set(()).unwrap();
})
.detach();
}
// task hasn't run yet
assert!(has_run.get().is_none());
crate::run().unwrap();
// Future has been run
assert!(has_run.get().is_some());
}
#[test]
fn test_respects_time_remaining() {
init_test();
let has_run = Rc::new(OnceCell::new());
{
let has_run = has_run.clone();
spawn(async move {
has_run.set(()).unwrap();
})
.detach();
}
TIME_USED.with_borrow_mut(|t| *t = 0.95);
// task hasn't run yet
assert!(has_run.get().is_none());
assert_eq!(Err(OutOfTime), crate::run());
// Check future still hasn't run
assert!(has_run.get().is_none());
}
}