[][src]Struct screen_layer::Vec2

#[repr(C)]pub struct Vec2<T> {
    pub x: T,
    pub y: T,
}

This type is used to represent the coordinate, and width and height of a layer. Vector type suited for 2D spatial coordinates.

Fields

x: Ty: T

Implementations

impl<T> Vec2<T>[src]

This type is used to represent the coordinate, and width and height of a layer.

pub fn yx(self) -> Vec2<T>[src]

Returns a copy of this vector, with X and Y swapped.

impl<T> Vec2<T>[src]

This type is used to represent the coordinate, and width and height of a layer.

pub const fn new(x: T, y: T) -> Vec2<T>[src]

Creates a vector from elements.

impl<T> Vec2<T>[src]

This type is used to represent the coordinate, and width and height of a layer.

pub fn broadcast(val: T) -> Vec2<T> where
    T: Copy
[src]

Broadcasts a single value to all elements of a new vector.

This function is also named splat() in some libraries, or set1() in Intel intrinsics.

"Broadcast" was chosen as the name because it is explicit enough and is the same wording as the description in relevant Intel intrinsics.

assert_eq!(Vec4::broadcast(5), Vec4::new(5,5,5,5));
assert_eq!(Vec4::broadcast(5), Vec4::from(5));

pub fn zero() -> Vec2<T> where
    T: Zero
[src]

Creates a new vector with all elements set to zero.

assert_eq!(Vec4::zero(), Vec4::new(0,0,0,0));
assert_eq!(Vec4::zero(), Vec4::broadcast(0));
assert_eq!(Vec4::zero(), Vec4::from(0));

pub fn one() -> Vec2<T> where
    T: One
[src]

Creates a new vector with all elements set to one.

assert_eq!(Vec4::one(), Vec4::new(1,1,1,1));
assert_eq!(Vec4::one(), Vec4::broadcast(1));
assert_eq!(Vec4::one(), Vec4::from(1));

pub fn iota() -> Vec2<T> where
    T: Zero + One + AddAssign<T> + Copy
[src]

Produces a vector of the first n integers, starting from zero, where n is the number of elements for this vector type.

The iota (ι) function, originating from APL.

See this StackOverflow answer.

This is mostly useful for debugging purposes and tests.

assert_eq!(Vec4::iota(), Vec4::new(0, 1, 2, 3));

pub const fn elem_count(&self) -> usize[src]

Convenience method which returns the number of elements of this vector.

let v = Vec4::new(0,1,2,3);
assert_eq!(v.elem_count(), 4);

pub const ELEM_COUNT: usize[src]

Convenience constant representing the number of elements for this vector type.

pub fn into_tuple(self) -> (T, T)[src]

Converts this into a tuple with the same number of elements by consuming.

pub fn into_array(self) -> [T; 2][src]

Converts this vector into a fixed-size array.

pub fn as_slice(&self) -> &[T][src]

View this vector as an immutable slice.

pub fn as_mut_slice(&mut self) -> &mut [T][src]

View this vector as a mutable slice.

pub fn from_slice(slice: &[T]) -> Vec2<T> where
    T: Default + Copy
[src]

Collects the content of a slice into a new vector. Elements are initialized to their default values.

pub fn map<D, F>(self, f: F) -> Vec2<D> where
    F: FnMut(T) -> D, 
[src]

Returns a memberwise-converted copy of this vector, using the given conversion closure.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
let i = v.map(|x| x.round() as i32);
assert_eq!(i, Vec4::new(0, 1, 2, 3));

Performing LERP on integer vectors by concisely converting them to floats:

let a = Vec4::new(0,1,2,3).map(|x| x as f32);
let b = Vec4::new(2,3,4,5).map(|x| x as f32);
let v = Vec4::lerp(a, b, 0.5_f32).map(|x| x.round() as i32);
assert_eq!(v, Vec4::new(1,2,3,4));

pub fn map2<D, F, S>(self, other: Vec2<S>, f: F) -> Vec2<D> where
    F: FnMut(T, S) -> D, 
[src]

Applies the function f to each element of two vectors, pairwise, and returns the result.

let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let v = a.map2(b, |a, b| a.wrapping_add(b));
assert_eq!(v, Vec4::zero());
let v = a.map2(b, u8::wrapping_add);
assert_eq!(v, Vec4::zero());

pub fn map3<D, F, S1, S2>(self, a: Vec2<S1>, b: Vec2<S2>, f: F) -> Vec2<D> where
    F: FnMut(T, S1, S2) -> D, 
[src]

Applies the function f to each element of three vectors, and returns the result.

let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let c = Vec4::<u8>::new(1, 2, 3, 4);
let v = a.map3(b, c, |a, b, c| a.wrapping_add(b) + c);
assert_eq!(v, c);

pub fn apply<F>(&mut self, f: F) where
    T: Copy,
    F: FnMut(T) -> T, 
[src]

Applies the function f to each element of this vector, in-place.

let mut v = Vec4::new(0_u32, 1, 2, 3);
v.apply(|x| x.count_ones());
assert_eq!(v, Vec4::new(0, 1, 1, 2));

pub fn apply2<F, S>(&mut self, other: Vec2<S>, f: F) where
    T: Copy,
    F: FnMut(T, S) -> T, 
[src]

Applies the function f to each element of two vectors, pairwise, in-place.

let mut a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
a.apply2(b, |a, b| a.wrapping_add(b));
assert_eq!(a, Vec4::zero());
a.apply2(b, u8::wrapping_add);
assert_eq!(a, b);

pub fn apply3<F, S1, S2>(&mut self, a: Vec2<S1>, b: Vec2<S2>, f: F) where
    T: Copy,
    F: FnMut(T, S1, S2) -> T, 
[src]

Applies the function f to each element of three vectors, in-place.

let mut a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let c = Vec4::<u8>::new(1, 2, 3, 4);
a.apply3(b, c, |a, b, c| a.wrapping_add(b) + c);
assert_eq!(a, c);

pub fn zip<S>(self, other: Vec2<S>) -> Vec2<(T, S)>[src]

"Zips" two vectors together into a vector of tuples.

let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
assert_eq!(a.zip(b), Vec4::new((255, 1), (254, 2), (253, 3), (252, 4)));

pub fn as_<D>(self) -> Vec2<D> where
    T: AsPrimitive<D>,
    D: 'static + Copy
[src]

Returns a memberwise-converted copy of this vector, using AsPrimitive.

Examples

let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.as_();
assert_eq!(i, Vec4::new(0, 1, 2, 3));

Safety

In Rust versions before 1.45.0, some uses of the as operator were not entirely safe. In particular, it was undefined behavior if:

  • A truncated floating point value cannot fit in the target integer type (#10184);
let x: u8 = (1.04E+17).as_(); // UB
  • Or a floating point value does not fit in another floating point type (#15536).
let x: f32 = (1e300f64).as_(); // UB

pub fn numcast<D>(self) -> Option<Vec2<D>> where
    T: NumCast,
    D: NumCast
[src]

Returns a memberwise-converted copy of this vector, using NumCast.

let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.numcast().unwrap();
assert_eq!(i, Vec4::new(0, 1, 2, 3));

pub fn mul_add<V>(self, mul: V, add: V) -> Vec2<T> where
    T: MulAdd<T, T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

Fused multiply-add. Returns self * mul + add, and may be implemented efficiently by the hardware.

The compiler is often able to detect this kind of operation, so generally you don't need to use it. However, it can make your intent clear.

The name for this method is the one used by the same operation on primitive floating-point types.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(4,5,6,7);
let c = Vec4::new(8,9,0,1);
assert_eq!(a*b+c, a.mul_add(b, c));

pub fn is_any_negative(&self) -> bool where
    T: Signed
[src]

Is any of the elements negative ?

This was intended for checking the validity of extent vectors, but can make sense for other types too.

pub fn are_all_positive(&self) -> bool where
    T: Signed
[src]

Are all of the elements positive ?

pub fn min<V>(a: V, b: V) -> Vec2<T> where
    T: Ord,
    V: Into<Vec2<T>>, 
[src]

Compares elements of a and b, and returns the minimum values into a new vector, using total ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(0,1,1,0);
assert_eq!(m, Vec4::min(a, b));

pub fn max<V>(a: V, b: V) -> Vec2<T> where
    T: Ord,
    V: Into<Vec2<T>>, 
[src]

Compares elements of a and b, and returns the maximum values into a new vector, using total ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(3,2,2,3);
assert_eq!(m, Vec4::max(a, b));

pub fn partial_min<V>(a: V, b: V) -> Vec2<T> where
    T: PartialOrd<T>,
    V: Into<Vec2<T>>, 
[src]

Compares elements of a and b, and returns the minimum values into a new vector, using partial ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(0,1,1,0);
assert_eq!(m, Vec4::partial_min(a, b));

pub fn partial_max<V>(a: V, b: V) -> Vec2<T> where
    T: PartialOrd<T>,
    V: Into<Vec2<T>>, 
[src]

Compares elements of a and b, and returns the maximum values into a new vector, using partial ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(3,2,2,3);
assert_eq!(m, Vec4::partial_max(a, b));

pub fn reduce_min(self) -> T where
    T: Ord
[src]

Returns the element which has the lowest value in this vector, using total ordering.

assert_eq!(-5, Vec4::new(0, 5, -5, 8).reduce_min());

pub fn reduce_max(self) -> T where
    T: Ord
[src]

Returns the element which has the highest value in this vector, using total ordering.

assert_eq!(8, Vec4::new(0, 5, -5, 8).reduce_max());

pub fn reduce_partial_min(self) -> T where
    T: PartialOrd<T>, 
[src]

Returns the element which has the lowest value in this vector, using partial ordering.

assert_eq!(-5_f32, Vec4::new(0_f32, 5., -5., 8.).reduce_partial_min());

pub fn reduce_partial_max(self) -> T where
    T: PartialOrd<T>, 
[src]

Returns the element which has the highest value in this vector, using partial ordering.

assert_eq!(8_f32, Vec4::new(0_f32, 5., -5., 8.).reduce_partial_max());

pub fn reduce_bitand(self) -> T where
    T: BitAnd<T, Output = T>, 
[src]

Returns the result of bitwise-AND (&) on all elements of this vector.

assert_eq!(true,  Vec4::new(true, true, true, true).reduce_bitand());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_bitand());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_bitand());

pub fn reduce_bitor(self) -> T where
    T: BitOr<T, Output = T>, 
[src]

Returns the result of bitwise-OR (|) on all elements of this vector.

assert_eq!(false, Vec4::new(false, false, false, false).reduce_bitor());
assert_eq!(true,  Vec4::new(false, false, true, false).reduce_bitor());

pub fn reduce_bitxor(self) -> T where
    T: BitXor<T, Output = T>, 
[src]

Returns the result of bitwise-XOR (^) on all elements of this vector.

assert_eq!(false, Vec4::new(true, true, true, true).reduce_bitxor());
assert_eq!(true,  Vec4::new(true, false, true, true).reduce_bitxor());

pub fn reduce<F>(self, f: F) -> T where
    F: FnMut(T, T) -> T, 
[src]

Reduces this vector with the given accumulator closure.

pub fn product(self) -> T where
    T: Mul<T, Output = T>, 
[src]

Returns the product of each of this vector's elements.

assert_eq!(1*2*3*4, Vec4::new(1, 2, 3, 4).product());

pub fn sum(self) -> T where
    T: Add<T, Output = T>, 
[src]

Returns the sum of each of this vector's elements.

assert_eq!(1+2+3+4, Vec4::new(1, 2, 3, 4).sum());

pub fn average(self) -> T where
    T: Add<T, Output = T> + Div<T, Output = T> + From<u8>, 
[src]

Returns the average of this vector's elements.

assert_eq!(2.5_f32, Vec4::new(1_f32, 2., 3., 4.).average());

You should avoid using it on u8 vectors, not only because integer overflows cause panics in debug mode, but also because of integer division, the result may not be the one you expect.

// This causes a panic!
let red = Vec4::new(255u8, 1, 0, 0);
let grey_level = red.average();
assert_eq!(grey_level, 128);

You may want to convert the elements to bigger integers (or floating-point) instead:

let red = Vec4::new(255u8, 1, 128, 128);

let red = red.map(|c| c as u16);
let grey_level = red.average() as u8;
assert_eq!(grey_level, 128);

let red = red.map(|c| c as f32);
let grey_level = red.average().round() as u8;
assert_eq!(grey_level, 128);

pub fn sqrt(self) -> Vec2<T> where
    T: Real
[src]

Returns a new vector which elements are the respective square roots of this vector's elements.

let v = Vec4::new(1f32, 2f32, 3f32, 4f32);
let s = Vec4::new(1f32, 4f32, 9f32, 16f32);
assert_eq!(v, s.sqrt());

pub fn rsqrt(self) -> Vec2<T> where
    T: Real
[src]

Returns a new vector which elements are the respective reciprocal square roots of this vector's elements.

let v = Vec4::new(1f32, 0.5f32, 1f32/3f32, 0.25f32);
let s = Vec4::new(1f32, 4f32, 9f32, 16f32);
assert_eq!(v, s.rsqrt());

pub fn recip(self) -> Vec2<T> where
    T: Real
[src]

Returns a new vector which elements are the respective reciprocal of this vector's elements.

let v = Vec4::new(1f32, 0.5f32, 0.25f32, 0.125f32);
let s = Vec4::new(1f32, 2f32, 4f32, 8f32);
assert_eq!(v, s.recip());
assert_eq!(s, v.recip());

pub fn ceil(self) -> Vec2<T> where
    T: Real
[src]

Returns a new vector which elements are rounded to the nearest greater integer.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.ceil(), Vec4::new(0f32, 1f32, 2f32, 4f32));

pub fn floor(self) -> Vec2<T> where
    T: Real
[src]

Returns a new vector which elements are rounded down to the nearest lower integer.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.floor(), Vec4::new(0f32, 1f32, 1f32, 3f32));

pub fn round(self) -> Vec2<T> where
    T: Real
[src]

Returns a new vector which elements are rounded to the nearest integer.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.round(), Vec4::new(0f32, 1f32, 2f32, 3f32));

pub fn hadd(self, rhs: Vec2<T>) -> Vec2<T> where
    T: Add<T, Output = T>, 
[src]

Horizontally adds adjacent pairs of elements in self and rhs into a new vector.

let a = Vec4::new(0, 1, 2, 3);
let b = Vec4::new(4, 5, 6, 7);
let h = Vec4::new(0+1, 2+3, 4+5, 6+7);
assert_eq!(h, a.hadd(b));

pub fn partial_cmpeq<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: PartialEq<T>,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial equality test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpeq(&v), Vec4::new(true, false, true, false));

pub fn partial_cmpne<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: PartialEq<T>,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial not-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpne(&v), Vec4::new(false, true, false, true));

pub fn partial_cmpge<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: PartialOrd<T>,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial greater-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpge(&v), Vec4::new(true, true, true, false));

pub fn partial_cmpgt<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: PartialOrd<T>,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial greater-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpgt(&v), Vec4::new(false, true, false, true));

pub fn partial_cmple<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: PartialOrd<T>,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial less-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmple(&v), Vec4::new(true, false, true, true));

pub fn partial_cmplt<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: PartialOrd<T>,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial less-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmplt(&v), Vec4::new(false, false, false, true));

pub fn cmpeq<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: Eq,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the partial equality test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpeq(&v), Vec4::new(true, false, true, false));

pub fn cmpne<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: Eq,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the total not-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpne(&v), Vec4::new(false, true, false, true));

pub fn cmpge<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: Ord,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the total greater-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpge(&v), Vec4::new(true, true, true, false));

pub fn cmpgt<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: Ord,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the total greater-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpgt(&v), Vec4::new(false, true, false, true));

pub fn cmple<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: Ord,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the total less-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmple(&v), Vec4::new(true, false, true, true));

pub fn cmplt<Rhs>(&self, rhs: &Rhs) -> Vec2<bool> where
    T: Ord,
    Rhs: AsRef<Vec2<T>>, 
[src]

Compares each element of two vectors with the total less-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmplt(&v), Vec4::new(false, false, false, true));

pub fn lerp_unclamped_precise<S>(
    from: Vec2<T>,
    to: Vec2<T>,
    factor: S
) -> Vec2<T> where
    T: Copy + One<Output = T> + Mul<T> + Sub<T, Output = T> + MulAdd<T, T, Output = T>,
    S: Into<Vec2<T>>, 
[src]

Returns the linear interpolation of from to to with factor unconstrained. See the Lerp trait.

pub fn lerp_unclamped<S>(from: Vec2<T>, to: Vec2<T>, factor: S) -> Vec2<T> where
    T: Copy + Sub<T, Output = T> + MulAdd<T, T, Output = T>,
    S: Into<Vec2<T>>, 
[src]

Same as lerp_unclamped_precise, implemented as a possibly faster but less precise operation. See the Lerp trait.

pub fn lerp<S>(from: Vec2<T>, to: Vec2<T>, factor: S) -> Vec2<T> where
    T: Copy + Sub<T, Output = T> + MulAdd<T, T, Output = T>,
    S: Clamp<S> + Into<Vec2<T>> + Zero + One
[src]

Returns the linear interpolation of from to to with factor constrained to be between 0 and 1. See the Lerp trait.

pub fn lerp_precise<S>(from: Vec2<T>, to: Vec2<T>, factor: S) -> Vec2<T> where
    T: Copy + One<Output = T> + Mul<T> + Sub<T, Output = T> + MulAdd<T, T, Output = T>,
    S: Clamp<S> + Into<Vec2<T>> + Zero + One
[src]

Returns the linear interpolation of from to to with factor constrained to be between 0 and 1. See the Lerp trait.

impl Vec2<bool>[src]

This type is used to represent the coordinate, and width and height of a layer.

pub fn reduce_and(self) -> bool[src]

Returns the result of logical AND (&&) on all elements of this vector.

assert_eq!(true,  Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());

pub fn reduce_or(self) -> bool[src]

Returns the result of logical OR (||) on all elements of this vector.

assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true,  Vec4::new(false, false, true, false).reduce_or());

pub fn reduce_ne(self) -> bool[src]

Reduces this vector using total inequality.

assert_eq!(false, Vec4::new(true, true, true, true).reduce_ne());
assert_eq!(true,  Vec4::new(true, false, true, true).reduce_ne());

impl<T> Vec2<T>[src]

This type is used to represent the coordinate, and width and height of a layer.

pub fn dot(self, v: Vec2<T>) -> T where
    T: Add<T, Output = T> + Mul<T, Output = T>, 
[src]

Dot product between this vector and another.

pub fn magnitude_squared(self) -> T where
    T: Copy + Add<T, Output = T> + Mul<T, Output = T>, 
[src]

The squared magnitude of a vector is its spatial length, squared. It is slightly cheaper to compute than magnitude because it avoids a square root.

pub fn magnitude(self) -> T where
    T: Add<T, Output = T> + Real
[src]

The magnitude of a vector is its spatial length.

pub fn distance_squared(self, v: Vec2<T>) -> T where
    T: Copy + Add<T, Output = T> + Sub<T, Output = T> + Mul<T, Output = T>, 
[src]

Squared distance between two point vectors. It is slightly cheaper to compute than distance because it avoids a square root.

pub fn distance(self, v: Vec2<T>) -> T where
    T: Add<T, Output = T> + Real
[src]

Distance between two point vectors.

pub fn normalized(self) -> Vec2<T> where
    T: Add<T, Output = T> + Real
[src]

Get a copy of this direction vector such that its length equals 1.

pub fn try_normalized<E>(self) -> Option<Vec2<T>> where
    T: RelativeEq<T, Epsilon = E> + Add<T, Output = T> + Real,
    E: Add<E, Output = E> + Real
[src]

Get a copy of this direction vector such that its length equals 1. If all components approximately zero, None is returned (uses RelativeEq).

pub fn normalize(&mut self) where
    T: Add<T, Output = T> + Real
[src]

Divide this vector's components such that its length equals 1.

pub fn is_normalized<E>(self) -> bool where
    T: RelativeEq<T, Epsilon = E> + Add<T, Output = T> + Real,
    E: Real
[src]

Is this vector normalized ? (Uses RelativeEq)

pub fn is_approx_zero<E>(self) -> bool where
    T: RelativeEq<T, Epsilon = E> + Add<T, Output = T> + Real,
    E: Real
[src]

Is this vector approximately zero ? (Uses RelativeEq)

pub fn is_magnitude_close_to<E>(self, x: T) -> bool where
    T: RelativeEq<T, Epsilon = E> + Add<T, Output = T> + Real,
    E: Real
[src]

Is the magnitude of the vector close to x ? (Uses RelativeEq)

pub fn angle_between(self, v: Vec2<T>) -> T where
    T: Add<T, Output = T> + Real + Clamp<T>, 
[src]

Get the smallest angle, in radians, between two direction vectors.

pub fn angle_between_degrees(self, v: Vec2<T>) -> T where
    T: Add<T, Output = T> + Real + Clamp<T>, 
[src]

👎 Deprecated:

Use to_degrees() on the value returned by angle_between() instead

Get the smallest angle, in degrees, between two direction vectors.

pub fn reflected(self, surface_normal: Vec2<T>) -> Vec2<T> where
    T: Copy + Add<T, Output = T, Output = T> + Mul<T, Output = T> + Sub<T, Output = T> + Add<T>, 
[src]

The reflection direction for this vector on a surface which normal is given.

pub fn refracted(self, surface_normal: Vec2<T>, eta: T) -> Vec2<T> where
    T: Real<Output = T, Output = T> + Add<T> + Mul<T>, 
[src]

The refraction vector for this incident vector, a surface normal and a ratio of indices of refraction (eta).

pub fn face_forward(self, incident: Vec2<T>, reference: Vec2<T>) -> Vec2<T> where
    T: Add<T, Output = T> + Mul<T, Output = T> + Zero + PartialOrd<T> + Neg<Output = T>, 
[src]

Orients a vector to point away from a surface as defined by its normal.

impl<T> Vec2<T>[src]

This type is used to represent the coordinate, and width and height of a layer.

pub fn determine_side(self, a: Vec2<T>, b: Vec2<T>) -> T where
    T: Copy + Sub<T, Output = T> + Mul<T, Output = T>, 
[src]

A signed value which tells in which half-space of the line segment ab this point lies.

Returns:

  • < 0: This point lies in the half-space right of segment ab.
  • == 0: This point lies in the infinite line along segment ab.
  • > 0: This point lies in the half-space left of segment ab.

pub fn signed_triangle_area(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> T where
    T: Copy + Sub<T, Output = T> + Mul<T, Output = T> + One + Div<T, Output = T> + Add<T, Output = T>, 
[src]

The signed area of the triangle defined by points (a, b, c).

pub fn triangle_area(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> T where
    T: Copy + Sub<T, Output = T> + Mul<T, Output = T> + One + Div<T, Output = T> + Add<T, Output = T> + PartialOrd<T> + Neg<Output = T>, 
[src]

The area of the triangle defined by points (a, b, c).

pub fn rotated_z(self, angle_radians: T) -> Vec2<T> where
    T: Real
[src]

Returns this vector rotated in 2D, counter-clockwise.

use std::f32::consts::PI;

assert_relative_eq!(Vec2::unit_x().rotated_z(0_f32), Vec2::unit_x());
assert_relative_eq!(Vec2::unit_x().rotated_z(PI/2.), Vec2::unit_y());
assert_relative_eq!(Vec2::unit_x().rotated_z(PI), -Vec2::unit_x());
assert_relative_eq!(Vec2::unit_x().rotated_z(PI*1.5), -Vec2::unit_y());
assert_relative_eq!(Vec2::unit_x().rotated_z(PI*2.), Vec2::unit_x(), epsilon = 0.000001);

pub fn rotate_z(&mut self, angle_radians: T) where
    T: Real
[src]

Rotates this vector in 2D. See rotated_z().

pub fn unit_x() -> Vec2<T> where
    T: Zero + One
[src]

Get the unit vector which has x set to 1.

pub fn unit_y() -> Vec2<T> where
    T: Zero + One
[src]

Get the unit vector which has y set to 1.

pub fn left() -> Vec2<T> where
    T: Zero + One + Neg<Output = T>, 
[src]

Get the unit vector which has x set to -1.

pub fn right() -> Vec2<T> where
    T: Zero + One
[src]

Get the unit vector which has x set to 1.

pub fn up() -> Vec2<T> where
    T: Zero + One
[src]

Get the unit vector which has y set to 1. This is not intended for screen-space coordinates (in which case the Y axis is reversed). When in doubt, just use unit_y() instead.

pub fn down() -> Vec2<T> where
    T: Zero + One + Neg<Output = T>, 
[src]

Get the unit vector which has y set to -1. This is not intended for screen-space coordinates (in which case the Y axis is reversed). When in doubt, just use unit_y() instead.

Trait Implementations

impl<T> AbsDiffEq<Vec2<T>> for Vec2<T> where
    T: AbsDiffEq<T>,
    <T as AbsDiffEq<T>>::Epsilon: Copy
[src]

type Epsilon = <T as AbsDiffEq<T>>::Epsilon

Used for specifying relative comparisons.

impl<'a, 'b, T> Add<&'a T> for &'b Vec2<T> where
    &'b T: Add<&'a T>,
    <&'b T as Add<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<'a, T> Add<&'a Vec2<T>> for Vec2<T> where
    T: Add<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<'a, 'b, T> Add<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Add<&'a T>,
    <&'b T as Add<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<'a, T> Add<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Add<T>,
    <&'a T as Add<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<V, T> Add<V> for Vec2<T> where
    T: Add<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<'a, T> Add<Vec2<T>> for &'a Vec2<T> where
    &'a T: Add<T>,
    <&'a T as Add<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<V, T> AddAssign<V> for Vec2<T> where
    T: AddAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<T> AsMut<[T]> for Vec2<T>[src]

impl<T> AsMut<Vec2<T>> for Vec2<T>[src]

impl<T> AsRef<[T]> for Vec2<T>[src]

impl<T> AsRef<Vec2<T>> for Vec2<T>[src]

impl<'a, 'b, T> BitAnd<&'a T> for &'b Vec2<T> where
    &'b T: BitAnd<&'a T>,
    <&'b T as BitAnd<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the & operator.

impl<'a, T> BitAnd<&'a Vec2<T>> for Vec2<T> where
    T: BitAnd<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the & operator.

impl<'a, 'b, T> BitAnd<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: BitAnd<&'a T>,
    <&'b T as BitAnd<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the & operator.

impl<'a, T> BitAnd<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: BitAnd<T>,
    <&'a T as BitAnd<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the & operator.

impl<V, T> BitAnd<V> for Vec2<T> where
    T: BitAnd<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the & operator.

impl<'a, T> BitAnd<Vec2<T>> for &'a Vec2<T> where
    &'a T: BitAnd<T>,
    <&'a T as BitAnd<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the & operator.

impl<V, T> BitAndAssign<V> for Vec2<T> where
    T: BitAndAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<'a, 'b, T> BitOr<&'a T> for &'b Vec2<T> where
    &'b T: BitOr<&'a T>,
    <&'b T as BitOr<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the | operator.

impl<'a, 'b, T> BitOr<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: BitOr<&'a T>,
    <&'b T as BitOr<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the | operator.

impl<'a, T> BitOr<&'a Vec2<T>> for Vec2<T> where
    T: BitOr<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the | operator.

impl<'a, T> BitOr<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: BitOr<T>,
    <&'a T as BitOr<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the | operator.

impl<V, T> BitOr<V> for Vec2<T> where
    T: BitOr<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the | operator.

impl<'a, T> BitOr<Vec2<T>> for &'a Vec2<T> where
    &'a T: BitOr<T>,
    <&'a T as BitOr<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the | operator.

impl<V, T> BitOrAssign<V> for Vec2<T> where
    T: BitOrAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<'a, 'b, T> BitXor<&'a T> for &'b Vec2<T> where
    &'b T: BitXor<&'a T>,
    <&'b T as BitXor<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the ^ operator.

impl<'a, 'b, T> BitXor<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: BitXor<&'a T>,
    <&'b T as BitXor<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the ^ operator.

impl<'a, T> BitXor<&'a Vec2<T>> for Vec2<T> where
    T: BitXor<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the ^ operator.

impl<'a, T> BitXor<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: BitXor<T>,
    <&'a T as BitXor<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the ^ operator.

impl<V, T> BitXor<V> for Vec2<T> where
    T: BitXor<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the ^ operator.

impl<'a, T> BitXor<Vec2<T>> for &'a Vec2<T> where
    &'a T: BitXor<T>,
    <&'a T as BitXor<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the ^ operator.

impl<V, T> BitXorAssign<V> for Vec2<T> where
    T: BitXorAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<T> Borrow<[T]> for Vec2<T>[src]

impl<T> BorrowMut<[T]> for Vec2<T>[src]

impl<T> Clamp<T> for Vec2<T> where
    T: Clamp<T> + Copy
[src]

impl<T> Clamp<Vec2<T>> for Vec2<T> where
    T: Clamp<T>, 
[src]

impl<T> Clone for Vec2<T> where
    T: Clone
[src]

impl<T> Copy for Vec2<T> where
    T: Copy
[src]

impl<T> Debug for Vec2<T> where
    T: Debug
[src]

impl<T> Default for Vec2<T> where
    T: Default
[src]

impl<T> Deref for Vec2<T>[src]

type Target = [T]

The resulting type after dereferencing.

impl<T> DerefMut for Vec2<T>[src]

impl<T> Display for Vec2<T> where
    T: Display
[src]

Displays the vector, formatted as ({...}, {...}) where ... are the actual formatting parameters.

impl<'a, 'b, T> Div<&'a T> for &'b Vec2<T> where
    &'b T: Div<&'a T>,
    <&'b T as Div<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<'a, 'b, T> Div<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Div<&'a T>,
    <&'b T as Div<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<'a, T> Div<&'a Vec2<T>> for Vec2<T> where
    T: Div<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<'a, T> Div<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Div<T>,
    <&'a T as Div<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<V, T> Div<V> for Vec2<T> where
    T: Div<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<'a, T> Div<Vec2<T>> for &'a Vec2<T> where
    &'a T: Div<T>,
    <&'a T as Div<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<V, T> DivAssign<V> for Vec2<T> where
    T: DivAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<T> Eq for Vec2<T> where
    T: Eq
[src]

impl<T> From<[T; 2]> for Vec2<T>[src]

impl<T> From<(T, T)> for Vec2<T>[src]

impl<T> From<Extent2<T>> for Vec2<T>[src]

impl<T> From<T> for Vec2<T> where
    T: Copy
[src]

A vector can be obtained from a single scalar by broadcasting it.

This conversion is important because it allows scalars to be smoothly accepted as operands in most vector operations.

For instance :

assert_eq!(Vec4::min(4, 5), Vec4::broadcast(4));
assert_eq!(Vec4::max(4, 5), Vec4::broadcast(5));
assert_eq!(Vec4::from(4), Vec4::broadcast(4));
assert_eq!(Vec4::from(4).mul_add(4, 5), Vec4::broadcast(21));

// scaling_3d() logically accepts a Vec3...
let _ = Mat4::<f32>::scaling_3d(Vec3::broadcast(5.0));
// ... but there you go; quick uniform scale, thanks to Into !
let _ = Mat4::scaling_3d(5_f32);

On the other hand, it also allows writing nonsense. To minimize surprises, the names of operations try to be as explicit as possible.

// This creates a matrix that translates to (5,5,5), but it's probably not what you meant.
// Hopefully the `_3d` suffix would help you catch this.
let _ = Mat4::translation_3d(5_f32);
// translation_3d() takes V: Into<Vec3> because it allows it to accept
// Vec2, Vec3 and Vec4, and also with both repr(C) and repr(simd) layouts.

impl<T> From<Vec3<T>> for Vec2<T>[src]

impl<T> From<Vec4<T>> for Vec2<T>[src]

impl<T> FromIterator<T> for Vec2<T> where
    T: Default
[src]

impl<T> Hash for Vec2<T> where
    T: Hash
[src]

impl<'a, T> IntoIterator for &'a Vec2<T>[src]

type Item = &'a T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

impl<'a, T> IntoIterator for &'a mut Vec2<T>[src]

type Item = &'a mut T

The type of the elements being iterated over.

type IntoIter = IterMut<'a, T>

Which kind of iterator are we turning this into?

impl<T> IntoIterator for Vec2<T>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?

impl<T> IsBetween<T> for Vec2<T> where
    T: IsBetween<T, Output = bool> + Copy
[src]

type Output = Vec2<bool>

bool for scalars, or vector of bools for vectors.

impl<T> IsBetween<Vec2<T>> for Vec2<T> where
    T: IsBetween<T, Output = bool>, 
[src]

type Output = Vec2<bool>

bool for scalars, or vector of bools for vectors.

impl<T, Factor> Lerp<Factor> for Vec2<T> where
    T: Lerp<Factor, Output = T>,
    Factor: Copy
[src]

type Output = Vec2<T>

The resulting type after performing the LERP operation.

impl<'a, T, Factor> Lerp<Factor> for &'a Vec2<T> where
    Factor: Copy,
    &'a T: Lerp<Factor>,
    <&'a T as Lerp<Factor>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after performing the LERP operation.

impl<'a, 'b, T> Mul<&'a T> for &'b Vec2<T> where
    &'b T: Mul<&'a T>,
    <&'b T as Mul<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<'a, 'b, T> Mul<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Mul<&'a T>,
    <&'b T as Mul<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<'a, T> Mul<&'a Vec2<T>> for Vec2<T> where
    T: Mul<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> Mul<Mat2<T>> for Vec2<T> where
    T: Copy + Mul<T, Output = T> + MulAdd<T, T, Output = T>, 
[src]

Multiplies a row vector with a row-major matrix, giving a row vector.

With SIMD vectors, this is the most efficient way.

use vek::mat::row_major::Mat4;
use vek::vec::Vec4;

let m = Mat4::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(26, 32, 18, 24);
assert_eq!(v * m, r);

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> Mul<Mat2<T>> for Vec2<T> where
    T: Copy + Mul<T, Output = T> + MulAdd<T, T, Output = T>, 
[src]

Multiplies a row vector with a column-major matrix, giving a row vector.

use vek::mat::column_major::Mat4;
use vek::vec::Vec4;

let m = Mat4::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(26, 32, 18, 24);
assert_eq!(v * m, r);

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<'a, T> Mul<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Mul<T>,
    <&'a T as Mul<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<V, T> Mul<V> for Vec2<T> where
    T: Mul<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<'a, T> Mul<Vec2<T>> for &'a Vec2<T> where
    &'a T: Mul<T>,
    <&'a T as Mul<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<'a, 'b, 'c, T> MulAdd<&'a Vec2<T>, &'b Vec2<T>> for &'c Vec2<T> where
    &'c T: MulAdd<&'a T, &'b T>,
    <&'c T as MulAdd<&'a T, &'b T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<'a, 'b, T> MulAdd<&'a Vec2<T>, &'b Vec2<T>> for Vec2<T> where
    T: MulAdd<&'a T, &'b T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<'a, 'c, T> MulAdd<&'a Vec2<T>, Vec2<T>> for &'c Vec2<T> where
    &'c T: MulAdd<&'a T, T>,
    <&'c T as MulAdd<&'a T, T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<'a, T> MulAdd<&'a Vec2<T>, Vec2<T>> for Vec2<T> where
    T: MulAdd<&'a T, T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<'b, 'c, T> MulAdd<Vec2<T>, &'b Vec2<T>> for &'c Vec2<T> where
    &'c T: MulAdd<T, &'b T>,
    <&'c T as MulAdd<T, &'b T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<'b, T> MulAdd<Vec2<T>, &'b Vec2<T>> for Vec2<T> where
    T: MulAdd<T, &'b T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<'c, T> MulAdd<Vec2<T>, Vec2<T>> for &'c Vec2<T> where
    &'c T: MulAdd<T, T>,
    <&'c T as MulAdd<T, T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<T> MulAdd<Vec2<T>, Vec2<T>> for Vec2<T> where
    T: MulAdd<T, T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the fused multiply-add operation.

impl<V, T> MulAssign<V> for Vec2<T> where
    T: MulAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<T> Neg for Vec2<T> where
    T: Neg<Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<T> Not for Vec2<T> where
    T: Not<Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the ! operator.

impl<T> One for Vec2<T> where
    T: One
[src]

impl<T> PartialEq<Vec2<T>> for Vec2<T> where
    T: PartialEq<T>, 
[src]

impl<T> Product<Vec2<T>> for Vec2<T> where
    T: Mul<T, Output = T> + One
[src]

impl<T> RelativeEq<Vec2<T>> for Vec2<T> where
    T: RelativeEq<T>,
    <T as AbsDiffEq<T>>::Epsilon: Copy
[src]

impl<'a, 'b, T> Rem<&'a T> for &'b Vec2<T> where
    &'b T: Rem<&'a T>,
    <&'b T as Rem<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the % operator.

impl<'a, 'b, T> Rem<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Rem<&'a T>,
    <&'b T as Rem<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the % operator.

impl<'a, T> Rem<&'a Vec2<T>> for Vec2<T> where
    T: Rem<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the % operator.

impl<'a, T> Rem<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Rem<T>,
    <&'a T as Rem<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the % operator.

impl<V, T> Rem<V> for Vec2<T> where
    T: Rem<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the % operator.

impl<'a, T> Rem<Vec2<T>> for &'a Vec2<T> where
    &'a T: Rem<T>,
    <&'a T as Rem<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the % operator.

impl<V, T> RemAssign<V> for Vec2<T> where
    T: RemAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<'a, 'b, T> Shl<&'a T> for &'b Vec2<T> where
    &'b T: Shl<&'a T>,
    <&'b T as Shl<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the << operator.

impl<'a, 'b, T> Shl<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Shl<&'a T>,
    <&'b T as Shl<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the << operator.

impl<'a, T> Shl<&'a Vec2<T>> for Vec2<T> where
    T: Shl<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the << operator.

impl<'a, T> Shl<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Shl<T>,
    <&'a T as Shl<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the << operator.

impl<V, T> Shl<V> for Vec2<T> where
    T: Shl<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the << operator.

impl<'a, T> Shl<Vec2<T>> for &'a Vec2<T> where
    &'a T: Shl<T>,
    <&'a T as Shl<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the << operator.

impl<V, T> ShlAssign<V> for Vec2<T> where
    T: ShlAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<'a, 'b, T> Shr<&'a T> for &'b Vec2<T> where
    &'b T: Shr<&'a T>,
    <&'b T as Shr<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the >> operator.

impl<'a, T> Shr<&'a Vec2<T>> for Vec2<T> where
    T: Shr<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the >> operator.

impl<'a, 'b, T> Shr<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Shr<&'a T>,
    <&'b T as Shr<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the >> operator.

impl<'a, T> Shr<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Shr<T>,
    <&'a T as Shr<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the >> operator.

impl<V, T> Shr<V> for Vec2<T> where
    T: Shr<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the >> operator.

impl<'a, T> Shr<Vec2<T>> for &'a Vec2<T> where
    &'a T: Shr<T>,
    <&'a T as Shr<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the >> operator.

impl<V, T> ShrAssign<V> for Vec2<T> where
    T: ShrAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<T> StructuralEq for Vec2<T>[src]

impl<T> StructuralPartialEq for Vec2<T>[src]

impl<'a, 'b, T> Sub<&'a T> for &'b Vec2<T> where
    &'b T: Sub<&'a T>,
    <&'b T as Sub<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<'a, T> Sub<&'a Vec2<T>> for Vec2<T> where
    T: Sub<&'a T, Output = T>, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<'a, 'b, T> Sub<&'a Vec2<T>> for &'b Vec2<T> where
    &'b T: Sub<&'a T>,
    <&'b T as Sub<&'a T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<'a, T> Sub<T> for &'a Vec2<T> where
    T: Copy,
    &'a T: Sub<T>,
    <&'a T as Sub<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<V, T> Sub<V> for Vec2<T> where
    T: Sub<T, Output = T>,
    V: Into<Vec2<T>>, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<'a, T> Sub<Vec2<T>> for &'a Vec2<T> where
    &'a T: Sub<T>,
    <&'a T as Sub<T>>::Output == T, 
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<V, T> SubAssign<V> for Vec2<T> where
    T: SubAssign<T>,
    V: Into<Vec2<T>>, 
[src]

impl<T> Sum<Vec2<T>> for Vec2<T> where
    T: Add<T, Output = T> + Zero
[src]

impl<T> UlpsEq<Vec2<T>> for Vec2<T> where
    T: UlpsEq<T>,
    <T as AbsDiffEq<T>>::Epsilon: Copy
[src]

impl<T> Wrap<T> for Vec2<T> where
    T: Wrap<T> + Copy
[src]

impl<T> Wrap<Vec2<T>> for Vec2<T> where
    T: Wrap<T>, 
[src]

impl<T> Zero for Vec2<T> where
    T: PartialEq<T> + Zero
[src]

Auto Trait Implementations

impl<T> Send for Vec2<T> where
    T: Send
[src]

impl<T> Sync for Vec2<T> where
    T: Sync
[src]

impl<T> Unpin for Vec2<T> where
    T: Unpin
[src]

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Clamp01 for T where
    T: Clamp<T> + Zero + One
[src]

impl<T> ClampMinus1 for T where
    T: Clamp<T> + Neg<Output = T> + One
[src]

impl<T> From<!> for T[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> IsBetween01 for T where
    T: IsBetween<T> + Zero + One
[src]

impl<T, Rhs> NumAssignOps<Rhs> for T where
    T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>, 
[src]

impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
    T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>, 
[src]

impl<T, Base> RefNum<Base> for T where
    T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.