1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
//! Resource leasing and pooling types.
//!
//! _Screen 13_ provides caching for acceleration structure, buffer and image resources which may be
//! leased from configurable pools using their corresponding information structure. Most programs
//! will do fine with a single [`FifoPool`](self::fifo::FifoPool).
//!
//! Leased resources may be bound directly to a render graph and used in the same manner as regular
//! resources. After rendering has finished, the leased resources will return to the pool for reuse.
//!
//! # Buckets
//!
//! The provided [`Pool`] implementations store resources in buckets, with each implementation
//! offering a different strategy which balances performance (_more buckets_) with memory efficiency
//! (_fewer buckets_).
//!
//! _Screen 13_'s pools can be grouped into two major categories:
//!
//! * Single-bucket: [`FifoPool`](self::fifo::FifoPool)
//! * Multi-bucket: [`LazyPool`](self::lazy::LazyPool), [`HashPool`](self::hash::HashPool)
//!
//! # Examples
//!
//! Leasing an image:
//!
//! ```no_run
//! # use std::sync::Arc;
//! # use ash::vk;
//! # use screen_13::driver::DriverError;
//! # use screen_13::driver::device::{Device, DeviceInfo};
//! # use screen_13::driver::image::{ImageInfo};
//! # use screen_13::pool::{Pool};
//! # use screen_13::pool::lazy::{LazyPool};
//! # fn main() -> Result<(), DriverError> {
//! # let device = Arc::new(Device::create_headless(DeviceInfo::new())?);
//! let mut pool = LazyPool::new(&device);
//!
//! let info = ImageInfo::new_2d(vk::Format::R8G8B8A8_UNORM, 8, 8, vk::ImageUsageFlags::STORAGE);
//! let my_image = pool.lease(info)?;
//!
//! assert!(my_image.info.usage.contains(vk::ImageUsageFlags::STORAGE));
//! # Ok(()) }
//! ```
//!
//! # When Should You Use Which Pool?
//!
//! These are fairly high-level break-downs of when each pool should be considered. You may need
//! to investigate each type of pool individually to provide the absolute best fit for your purpose.
//!
//! ### Use a [`FifoPool`](self::fifo::FifoPool) when:
//! * Low memory usage is most important
//! * Automatic bucket management is desired
//!
//! ### Use a [`LazyPool`](self::lazy::LazyPool) when:
//! * Resources have different attributes each frame
//!
//! ### Use a [`HashPool`](self::hash::HashPool) when:
//! * High performance is most important
//! * Resources have consistent attributes each frame
pub mod fifo;
pub mod hash;
pub mod lazy;
use {
crate::driver::{
accel_struct::{
AccelerationStructure, AccelerationStructureInfo, AccelerationStructureInfoBuilder,
},
buffer::{Buffer, BufferInfo, BufferInfoBuilder},
image::{Image, ImageInfo, ImageInfoBuilder},
CommandBuffer, DriverError,
},
derive_builder::{Builder, UninitializedFieldError},
parking_lot::Mutex,
std::{
collections::VecDeque,
fmt::Debug,
mem::ManuallyDrop,
ops::{Deref, DerefMut},
sync::{Arc, Weak},
thread::panicking,
},
};
type Cache<T> = Arc<Mutex<VecDeque<T>>>;
type CacheRef<T> = Weak<Mutex<VecDeque<T>>>;
fn can_lease_command_buffer(cmd_buf: &CommandBuffer) -> bool {
unsafe {
// Don't lease this command buffer if it is unsignalled; we'll create a new one
// and wait for this, and those behind it, to signal.
cmd_buf
.device
.get_fence_status(cmd_buf.fence)
.unwrap_or_default()
}
}
/// Holds a leased resource and implements `Drop` in order to return the resource.
///
/// This simple wrapper type implements only the `AsRef`, `AsMut`, `Deref` and `DerefMut` traits
/// and provides no other functionality. A freshly leased resource is guaranteed to have no other
/// owners and may be mutably accessed.
#[derive(Debug)]
pub struct Lease<T> {
cache_ref: CacheRef<T>,
item: ManuallyDrop<T>,
}
impl<T> Lease<T> {
fn new(cache_ref: CacheRef<T>, item: T) -> Self {
Self {
cache_ref,
item: ManuallyDrop::new(item),
}
}
}
impl<T> AsRef<T> for Lease<T> {
fn as_ref(&self) -> &T {
&self.item
}
}
impl<T> AsMut<T> for Lease<T> {
fn as_mut(&mut self) -> &mut T {
&mut self.item
}
}
impl<T> Deref for Lease<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.item
}
}
impl<T> DerefMut for Lease<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.item
}
}
impl<T> Drop for Lease<T> {
fn drop(&mut self) {
if panicking() {
return;
}
// If the pool cache has been dropped we must manually drop the item, otherwise it goes back
// into the pool.
if let Some(cache) = self.cache_ref.upgrade() {
let mut cache = cache.lock();
if cache.len() >= cache.capacity() {
cache.pop_front();
}
cache.push_back(unsafe { ManuallyDrop::take(&mut self.item) });
} else {
unsafe {
ManuallyDrop::drop(&mut self.item);
}
}
}
}
/// Allows leasing of resources using driver information structures.
pub trait Pool<I, T> {
/// Lease a resource.
fn lease(&mut self, info: I) -> Result<Lease<T>, DriverError>;
}
// Enable leasing items using their info builder type for convenience
macro_rules! lease_builder {
($info:ident => $item:ident) => {
paste::paste! {
impl<T> Pool<[<$info Builder>], $item> for T where T: Pool<$info, $item> {
fn lease(&mut self, builder: [<$info Builder>]) -> Result<Lease<$item>, DriverError> {
let info = builder.build();
self.lease(info)
}
}
}
};
}
lease_builder!(AccelerationStructureInfo => AccelerationStructure);
lease_builder!(BufferInfo => Buffer);
lease_builder!(ImageInfo => Image);
/// Information used to create a [`FifoPool`](self::fifo::FifoPool),
/// [`HashPool`](self::hash::HashPool) or [`LazyPool`](self::lazy::LazyPool) instance.
#[derive(Builder, Clone, Copy, Debug)]
#[builder(
build_fn(private, name = "fallible_build", error = "PoolInfoBuilderError"),
derive(Debug),
pattern = "owned"
)]
pub struct PoolInfo {
/// The maximum size of a single bucket of acceleration structure resource instances. The
/// default value is [`PoolInfo::DEFAULT_RESOURCE_CAPACITY`].
///
/// # Note
///
/// Individual [`Pool`] implementations store varying numbers of buckets. Read the documentation
/// of each implementation to understand how this affects total number of stored acceleration
/// structure instances.
#[builder(default = "PoolInfo::DEFAULT_RESOURCE_CAPACITY", setter(strip_option))]
pub accel_struct_capacity: usize,
/// The maximum size of a single bucket of buffer resource instances. The default value is
/// [`PoolInfo::DEFAULT_RESOURCE_CAPACITY`].
///
/// # Note
///
/// Individual [`Pool`] implementations store varying numbers of buckets. Read the documentation
/// of each implementation to understand how this affects total number of stored buffer
/// instances.
#[builder(default = "PoolInfo::DEFAULT_RESOURCE_CAPACITY", setter(strip_option))]
pub buffer_capacity: usize,
/// The maximum size of a single bucket of image resource instances. The default value is
/// [`PoolInfo::DEFAULT_RESOURCE_CAPACITY`].
///
/// # Note
///
/// Individual [`Pool`] implementations store varying numbers of buckets. Read the documentation
/// of each implementation to understand how this affects total number of stored image
/// instances.
#[builder(default = "PoolInfo::DEFAULT_RESOURCE_CAPACITY", setter(strip_option))]
pub image_capacity: usize,
}
impl PoolInfo {
/// The maximum size of a single bucket of resource instances.
pub const DEFAULT_RESOURCE_CAPACITY: usize = 4;
/// Constructs a new `PoolInfo` with the given acceleration structure, buffer and image resource
/// capacity for any single bucket.
pub const fn with_capacity(resource_capacity: usize) -> Self {
Self {
accel_struct_capacity: resource_capacity,
buffer_capacity: resource_capacity,
image_capacity: resource_capacity,
}
}
fn default_cache<T>() -> Cache<T> {
Cache::new(Mutex::new(VecDeque::with_capacity(
Self::DEFAULT_RESOURCE_CAPACITY,
)))
}
fn explicit_cache<T>(capacity: usize) -> Cache<T> {
Cache::new(Mutex::new(VecDeque::with_capacity(capacity)))
}
}
impl Default for PoolInfo {
fn default() -> Self {
PoolInfoBuilder::default().into()
}
}
impl From<PoolInfoBuilder> for PoolInfo {
fn from(info: PoolInfoBuilder) -> Self {
info.build()
}
}
impl From<usize> for PoolInfo {
fn from(value: usize) -> Self {
Self {
accel_struct_capacity: value,
buffer_capacity: value,
image_capacity: value,
}
}
}
// HACK: https://github.com/colin-kiegel/rust-derive-builder/issues/56
impl PoolInfoBuilder {
/// Builds a new `PoolInfo`.
pub fn build(self) -> PoolInfo {
self.fallible_build()
.expect("All required fields set at initialization")
}
}
#[derive(Debug)]
struct PoolInfoBuilderError;
impl From<UninitializedFieldError> for PoolInfoBuilderError {
fn from(_: UninitializedFieldError) -> Self {
Self
}
}