1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
//! Contains the heart and soul of Screen 13. //! //! This module does the heavy-lifting work in this library and is made from a number of child //! internal-only modules which support the functionality described here. //! //! ## Note About Operations //! //! All of the things `Render` allows are recorded internally using `Op` implementations which are //! themselves just containers of graphics API resources and the commands to work on them. //! //! I think this structure is really flexible and clear and might live for a few good versions at //! least. //! //! _NOTE:_ `Op` implementations should follow a few rules for sanity: //! - Use a `Pool` instance to acquire new resources //! - `new(...) -> Self`: function initializes with minimum settings //! - `with_X(&mut self, ...) -> &mut Self`: Use the mutable borrow builder pattern for options/extras //! - `record(&mut self, ...)`: function does three things: //! 1. Initialize final settings/pipelines //! 1. Write descriptors //! 1. Submit all commands //! - `submit_X(&self)`: functions which contain minimal "if" cases and logic; simple calls only. //! //! ## Note About `Rc` //! //! Screen 13 currently uses the `Rc` type in order to synchronize work between various operations. //! //! Unfortunately, this limits Screen 13 resources from being shared across threads. We could //! simply replace those references with `Arc` and call it a day (that would work), but I'm not yet //! sure that's a good pattern, it would introduce unessecery resource synchronization. //! //! I think as the API matures a better solution will become clearer, just not sure which types I //! want to be `Send` yet. The driver really could be `Sync`. //! //! ## Note About `def` //! //! Internally Screen 13 uses pre-defined render passes and pipelines to function. //! //! All of these definitions exist in the `def` module and are *great*, but inflexible. They only //! do what I programmed them to do. Lame. //! //! Instead, these definitions should be built and cached at runtime based on the operation which //! have been recorded. There are follow-on things such as shaders to handle and so I'm not ready //! for this change yet. //! //! Similiarly, the handling of command buffers and submission queues is currently on a //! per-operation basis which is very limiting. We should keep running command buffers and only //! close them when the graph of operations says so. pub mod clear { //! Types for clearing textures with a configurable color. pub use super::op::ClearOp; } pub mod copy { //! Types for copying textures with configurable source and destination coordinates. pub use super::op::CopyOp; } pub mod draw { //! Types for drawing user-specified models and lights onto textures. pub use super::op::{ Draw, DrawOp, LineCommand, Material, Mesh, ModelCommand, PointLightCommand, RectLightCommand, Skydome, SpotlightCommand, SunlightCommand, }; } pub mod encode { //! Types for encoding textures into the `.jpg` or `.png` file formats. pub use super::op::EncodeOp; } pub mod font { //! Types for writing text onto textures using stylized fonts. pub use super::op::{Font, FontOp}; } pub mod gradient { //! Types for filling textures with linear and radial gradients. pub use super::op::GradientOp; } pub mod write { //! Types for pasting/splatting textures with configurable source and destination transforms. pub use super::op::{Write, WriteMode, WriteOp}; } mod data; mod def; mod driver; mod model; mod op; mod pool; mod render; mod spirv { include!(concat!(env!("OUT_DIR"), "/spirv/mod.rs")); } mod swapchain; mod texture; pub use self::{ def::vertex, model::{MeshFilter, Model, Pose}, op::Bitmap, render::Render, texture::Texture, }; pub(crate) use self::{driver::Driver, op::Op, pool::Pool, swapchain::Swapchain}; use { self::{ data::{Data, Mapping}, driver::{Device, Image2d, Surface}, font::*, op::BitmapOp, pool::{Lease, PoolRef}, vertex::Vertex, }, crate::{ error::Error, math::Extent, pak::{model::Mesh, AnimationId, BitmapFormat, BitmapId, IndexType, ModelId, Pak}, }, gfx_hal::{ adapter::Adapter, buffer::Usage, device::Device as _, queue::QueueFamily, window::Surface as _, Instance as _, }, gfx_impl::{Backend as _Backend, Instance}, num_traits::Num, std::{ cell::RefCell, fmt::Debug, io::{Read, Seek}, rc::Rc, }, winit::window::Window, }; #[cfg(debug_assertions)] use { num_format::{Locale, ToFormattedString}, std::time::Instant, }; /// A two dimensional rendering result. pub type Texture2d = TextureRef<Image2d>; /// A helpful alias used to share `Bitmap` instances used with rendering operations. pub type BitmapRef = Rc<Bitmap>; /// A helpful alias used to share `Model` instances used with rendering operations. pub type ModelRef = Rc<Model>; pub(crate) type TextureRef<I> = Rc<RefCell<Texture<I>>>; type LoadCache = RefCell<Pool>; type OpCache = RefCell<Option<Vec<Box<dyn Op>>>>; /// Rounds down a multiple of atom; panics if atom is zero fn align_down<N: Copy + Num>(size: N, atom: N) -> N { size - size % atom } /// Rounds up to a multiple of atom; panics if either parameter is zero fn align_up<N: Copy + Num>(size: N, atom: N) -> N { (size - <N>::one()) - (size - <N>::one()) % atom + atom } fn create_instance() -> (Adapter<_Backend>, Instance) { let instance = Instance::create("attackgoat/screen-13", 1).unwrap(); let mut adapters = instance.enumerate_adapters(); if adapters.is_empty() { // TODO: Error::adapter } let adapter = adapters.remove(0); (adapter, instance) } // TODO: Different path for webgl and need this -> #[cfg(any(feature = "vulkan", feature = "metal"))] fn create_surface(window: &Window) -> (Adapter<_Backend>, Surface) { let (adapter, instance) = create_instance(); let surface = Surface::new(instance, window).unwrap(); (adapter, surface) } /// Indicates the provided data was bad. #[derive(Debug)] pub struct BadData; /// Specifies a method for combining two images using a mathmatical formula. #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)] pub enum BlendMode { /// Blend formula: a + b Add, /// Blend formula: AlphaAdd, /// Blend formula: 1 - (1 - a) / b ColorBurn, /// Blend formula: a / (1 - b) ColorDodge, /// Blend formula: Color, /// Blend formula: min(a, b) Darken, /// Blend formula: min(a, b) (_per-component_) DarkerColor, /// Blend formula: abs(a - b) Difference, /// Blend formula: a / b Divide, /// Blend formula: a + b - 2 * a * b Exclusion, /// Blend formula: hard_light(a, b) (_per-component_) /// /// Where: /// - hard_light(a, b) = if b < 0.5 { /// 2 * a * b /// } else { /// 1 - 2 * (1 - a) * (1 - b) /// } HardLight, // TODO: It looks like this formula is correct and hard light and overlay are wrong or the // other way around? /// Blend formula: hard_mix(a, b) (_per-component_) /// /// Where: /// - hard_mix(a, b) = if b < 0.5 { /// 2 * a * b /// } else { /// 1 - 2 * (1 - a) * (1 - b) /// } HardMix, /// Blend formula: a + b - 1 LinearBurn, /// Blend formula: a * b Multiply, /// Blend formula: b /// /// _NOTE:_ This is the default blend mode. Normal, /// Blend formula: overlay(a, b) (_per-component_) /// /// Where: /// - overlay(a, b) = if b < 0.5 { /// 2 * a * b /// } else { /// 1 - 2 * (1 - a) * (1 - b) /// } Overlay, /// Blend formula: 1 - (1 - a) * (1 - b) Screen, /// Blend formula: a - b Subtract, /// Blend formula: vivid_light(a, b) (_per-component_) /// /// Where: /// - vivid_light(a, b) = if b < 0.5 { /// 1 - (1 - a) / b /// } else { /// a / (1 - b) /// } VividLight, } impl Default for BlendMode { fn default() -> Self { Self::Normal } } // TODO: Make this drainable? /// An opaque cache of graphics API handles and resources. /// /// For optimal performance, `Cache` instances should remain as owned values for at least three /// hardware frames after their last use. /// /// _NOTE:_ Program execution will halt for a few milliseconds after `Cache` types with active /// internal operations are dropped. #[derive(Default)] pub struct Cache(PoolRef<Pool>); /// Allows you to load resources and begin rendering operations. pub struct Gpu { driver: Driver, loads: LoadCache, ops: OpCache, renders: Cache, } impl Gpu { pub(super) fn new(window: &Window) -> (Self, Driver, Surface) { let (adapter, surface) = create_surface(window); info!( "Device: {} ({:?})", &adapter.info.name, adapter.info.device_type ); let queue = adapter .queue_families .iter() .find(|family| { let ty = family.queue_type(); surface.supports_queue_family(family) && ty.supports_graphics() && ty.supports_compute() }) .ok_or_else(Error::graphics_queue_family) .unwrap(); let driver = Driver::new(RefCell::new( Device::new(adapter.physical_device, queue).unwrap(), )); let driver_copy = Driver::clone(&driver); ( Self { driver, loads: Default::default(), ops: Default::default(), renders: Default::default(), }, driver_copy, surface, ) } // TODO: Enable sharing between this and "on-screen" /// Creates a `Gpu` for off-screen or headless use. /// /// _NOTE_: Resources loaded or read from a `Gpu` created in headless or screen modes cannot be /// used with other instances, including of the same mode. This is a limitation only because /// the code to share the resources properly has not be started yet. pub fn offscreen() -> Self { let (adapter, _) = create_instance(); let queue = adapter .queue_families .iter() .find(|family| { let ty = family.queue_type(); ty.supports_graphics() && ty.supports_compute() }) .ok_or_else(Error::graphics_queue_family) .unwrap(); let driver = Driver::new(RefCell::new( Device::new(adapter.physical_device, queue).unwrap(), )); Self { driver, loads: Default::default(), ops: Default::default(), renders: Default::default(), } } /// Loads a bitmap at runtime from the given data. /// /// pub fn load_bitmap( &self, #[cfg(feature = "debug-names")] name: &str, pixel_ty: BitmapFormat, pixels: &[u8], width: u32, stride: u32, ) -> Bitmap { #[cfg(feature = "debug-names")] let _ = name; let _ = pixel_ty; let _ = pixels; let _ = width; let _ = stride; todo!(); } /// Loads an indexed model at runtime from the given data. /// /// pub fn load_indexed_model< M: IntoIterator<Item = Mesh>, I: IntoIterator<Item = u32>, V: IntoIterator<Item = VV>, VV: Copy + Into<Vertex>, >( &self, #[cfg(feature = "debug-names")] name: &str, meshes: M, _indices: I, _vertices: V, ) -> Result<Model, BadData> { let meshes = meshes.into_iter().collect::<Vec<_>>(); // let indices = indices.into_iter().collect::<Vec<_>>(); // let vertices = vertices.into_iter().collect::<Vec<_>>(); // Make sure the incoming meshes are valid for mesh in &meshes { if mesh.vertex_count() % 3 != 0 { return Err(BadData); } } let mut pool = self.loads.borrow_mut(); let idx_buf_len = 0; let idx_buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, idx_buf_len, Usage::INDEX | Usage::STORAGE, ); let vertex_buf_len = 0; let vertex_buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, vertex_buf_len, Usage::VERTEX | Usage::STORAGE, ); let staging_buf_len = 0; let staging_buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, staging_buf_len, Usage::VERTEX | Usage::STORAGE, ); let write_mask_len = 0; let write_mask = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, write_mask_len, Usage::STORAGE, ); Ok(Model::new( meshes, IndexType::U32, (idx_buf, idx_buf_len), (vertex_buf, vertex_buf_len), (staging_buf, staging_buf_len, write_mask), )) } /// Loads a regular model at runtime from the given data. /// /// pub fn load_model< IM: IntoIterator<Item = M>, IV: IntoIterator<Item = V>, M: Into<Mesh>, V: Copy + Into<Vertex>, >( &self, #[cfg(feature = "debug-names")] name: &str, meshes: IM, vertices: IV, ) -> Result<Model, BadData> { let mut meshes = meshes .into_iter() .map(|mesh| mesh.into()) .collect::<Vec<_>>(); let vertices = vertices.into_iter().collect::<Vec<_>>(); let mut indices = vec![]; // Add index data to the meshes (and build a buffer) let mut base_vertex = 0; for mesh in &mut meshes { let base_idx = indices.len(); let mut cache: Vec<Vertex> = vec![]; let vertex_count = mesh.vertex_count() as usize; // First we index the vertices ... for idx in base_vertex..base_vertex + vertex_count { let vertex = if let Some(vertex) = vertices.get(idx) { (*vertex).into() } else { return Err(BadData); }; debug_assert!(vertex.is_finite()); if let Err(idx) = cache.binary_search_by(|probe| probe.cmp(&vertex)) { cache.insert(idx, vertex); } } // ... and then we push all the indices into the buffer for idx in base_vertex..base_vertex + vertex_count { let vertex = vertices.get(idx).unwrap(); let vertex = (*vertex).into(); let idx = cache.binary_search_by(|probe| probe.cmp(&vertex)).unwrap(); indices.push(idx as _); } mesh.indices = base_idx as u32..(base_idx + indices.len()) as u32; base_vertex += vertex_count; } self.load_indexed_model( #[cfg(feature = "debug-names")] name, meshes, indices, vertices, ) } // TODO: Finish this bit! /// Reads the `Animation` with the given id from the pak. pub fn read_animation<R: Read + Seek>( &self, #[cfg(debug_assertions)] _name: &str, _pak: &mut Pak<R>, _id: AnimationId, ) -> ModelRef { //let _pool = PoolRef::clone(&self.pool); //let _anim = pak.read_animation(id); // let indices = model.indices(); // let index_buf_len = indices.len() as _; // let mut index_buf = pool.borrow_mut().data_usage( // #[cfg(debug_assertions)] // name, // index_buf_len, // Usage::INDEX, // ); // { // let mut mapped_range = index_buf.map_range_mut(0..index_buf_len).unwrap(); // mapped_range.copy_from_slice(&indices); // Mapping::flush(&mut mapped_range).unwrap(); // } // let vertices = model.vertices(); // let vertex_buf_len = vertices.len() as _; // let mut vertex_buf = pool.borrow_mut().data_usage( // #[cfg(debug_assertions)] // name, // vertex_buf_len, // Usage::VERTEX, // ); // { // let mut mapped_range = vertex_buf.map_range_mut(0..vertex_buf_len).unwrap(); // mapped_range.copy_from_slice(&vertices); // Mapping::flush(&mut mapped_range).unwrap(); // } // let model = Model::new( // model.meshes().map(Clone::clone).collect(), // index_buf, // vertex_buf, // ); // ModelRef::new(model) todo!() } /// Reads the `Bitmap` with the given key from the pak. pub fn read_bitmap<K: AsRef<str>, R: Read + Seek>( &self, #[cfg(feature = "debug-names")] name: &str, pak: &mut Pak<R>, key: K, ) -> Bitmap { let id = pak.bitmap_id(key).unwrap(); self.read_bitmap_with_id( #[cfg(feature = "debug-names")] name, pak, id, ) } /// Reads the `Bitmap` with the given id from the pak. pub fn read_bitmap_with_id<R: Read + Seek>( &self, #[cfg(feature = "debug-names")] name: &str, pak: &mut Pak<R>, id: BitmapId, ) -> Bitmap { let bitmap = pak.read_bitmap(id); let mut pool = self.loads.borrow_mut(); unsafe { BitmapOp::new( #[cfg(feature = "debug-names")] name, &self.driver, &mut pool, &bitmap, ) .record() } } /// Reads the `Font` with the given face from the pak. /// /// Only bitmapped fonts are supported. pub fn read_font<F: AsRef<str>, R: Read + Seek>(&self, pak: &mut Pak<R>, face: F) -> Font { #[cfg(debug_assertions)] debug!("Loading font `{}`", face.as_ref()); Font::load( &self.driver, &mut self.loads.borrow_mut(), pak, face.as_ref(), ) } /// Reads the `Model` with the given key from the pak. pub fn read_model<K: AsRef<str>, R: Read + Seek>( &self, #[cfg(feature = "debug-names")] name: &str, pak: &mut Pak<R>, key: K, ) -> Model { let id = pak.model_id(key).unwrap(); self.read_model_with_id( #[cfg(feature = "debug-names")] name, pak, id, ) } /// Reads the `Model` with the given id from the pak. pub fn read_model_with_id<R: Read + Seek>( &self, #[cfg(feature = "debug-names")] name: &str, pak: &mut Pak<R>, id: ModelId, ) -> Model { let mut pool = self.loads.borrow_mut(); let model = pak.read_model(id); // Create an index buffer let (idx_buf, idx_buf_len) = { let src = model.indices(); let len = src.len() as _; let mut buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, len, Usage::INDEX | Usage::STORAGE, ); // Fill the index buffer { let mut mapped_range = buf.map_range_mut(0..len).unwrap(); mapped_range.copy_from_slice(src); Mapping::flush(&mut mapped_range).unwrap(); } (buf, len) }; // Create a staging buffer (holds vertices before we calculate additional vertex attributes) let (staging_buf, staging_buf_len) = { let src = model.vertices(); let len = src.len() as _; let mut buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, len, Usage::STORAGE, ); // Fill the staging buffer { let mut mapped_range = buf.map_range_mut(0..len).unwrap(); mapped_range.copy_from_slice(src); Mapping::flush(&mut mapped_range).unwrap(); } (buf, len) }; // The write mask is the used during vertex attribute calculation let write_mask = { let src = model.write_mask(); let len = src.len() as _; let mut buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, len, Usage::STORAGE, ); // Fill the write mask buffer { let mut mapped_range = buf.map_range_mut(0..len).unwrap(); mapped_range.copy_from_slice(src); Mapping::flush(&mut mapped_range).unwrap(); } buf }; let idx_ty = model.idx_ty(); let mut meshes = model.take_meshes(); let mut vertex_buf_len = 0; for mesh in &mut meshes { let stride = if mesh.is_animated() { 80 } else { 48 }; // We pad each mesh in the vertex buffer so that drawing is easier (no vertex // re-binds; but this requires that all vertices in the buffer have a compatible // alignment. Because we have static (12 floats/48 bytes) and animated (20 floats/ // 80 bytes) vertices, we round up to 60 floats/240 bytes. This means any possible // boundary we try to draw at will start at some multiple of either the static // or animated vertices. vertex_buf_len += vertex_buf_len % 240; mesh.set_base_vertex((vertex_buf_len / stride) as _); // Account for the vertices, updating the base vertex vertex_buf_len += mesh.vertex_count() as u64 * stride; } // This is the real vertex buffer which will hold the calculated attributes let vertex_buf = pool.data_usage( #[cfg(feature = "debug-names")] name, &self.driver, vertex_buf_len, Usage::STORAGE | Usage::VERTEX, ); Model::new( meshes, idx_ty, (idx_buf, idx_buf_len), (vertex_buf, vertex_buf_len), (staging_buf, staging_buf_len, write_mask), ) } /// Constructs a `Render` of the given dimensions. /// /// _NOTE:_ This function uses an internal cache. /// /// ## Examples: /// /// ``` /// use screen_13::prelude_all::*; /// /// struct Foo; /// /// impl Screen for Foo { /// fn render(&self, gpu: &Gpu, dims: Extent) -> Render { /// let frame = gpu.render(dims); /// /// ... /// } /// /// ... /// } pub fn render<D: Into<Extent>>( &self, #[cfg(feature = "debug-names")] name: &str, dims: D, ) -> Render { self.render_with_cache( #[cfg(feature = "debug-names")] name, dims, &self.renders, ) } /// Constructs a `Render` of the given dimensions, using the provided cache. /// /// ## Examples: /// /// ``` /// use screen_13::prelude_all::*; /// /// #[derive(Default)] /// struct Foo(Cache); /// /// impl Screen for Foo { /// fn render(&self, gpu: &Gpu, dims: Extent) -> Render { /// let cache = &self.0; /// let frame = gpu.render(dims, cache); /// /// ... /// } /// /// ... /// } pub fn render_with_cache<D: Into<Extent>>( &self, #[cfg(feature = "debug-names")] name: &str, dims: D, cache: &Cache, ) -> Render { // There may be pending operations from a previously resolved render; if so // we just stick them into the next render that goes out the door. let ops = if let Some(ops) = self.ops.borrow_mut().take() { ops } else { Default::default() }; // Pull a rendering pool from the cache or we create and lease a new one let pool = if let Some(pool) = cache.0.borrow_mut().pop_back() { pool } else { debug!("Creating new render pool"); Default::default() }; let pool = Lease::new(pool, &cache.0); Render::new( #[cfg(feature = "debug-names")] name, &self.driver, dims.into(), pool, ops, ) } /// Resolves a render into a texture which can be written to other renders. pub fn resolve(&self, render: Render) -> Lease<Texture2d> { let (target, ops) = render.resolve(); let mut cache = self.ops.borrow_mut(); if let Some(cache) = cache.as_mut() { cache.extend(ops); } else { cache.replace(ops); } target } pub(crate) fn wait_idle(&self) { #[cfg(debug_assertions)] let started = Instant::now(); // We are required to wait for the GPU to finish what we submitted before dropping the driver self.driver.borrow().wait_idle().unwrap(); #[cfg(debug_assertions)] { let elapsed = Instant::now() - started; debug!( "Wait for GPU idle took {}ms", elapsed.as_millis().to_formatted_string(&Locale::en) ); } } } impl Drop for Gpu { fn drop(&mut self) { self.wait_idle(); } } /// Masking is the process of modifying a target image alpha channel using a series of /// blend-like operations. /// /// TODO: This feature isn't fully implemented yet #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)] pub enum MaskMode { /// Mask formula: a + b Add, /// Mask formula: min(a, b) Darken, /// Mask formula: abs(a - b) Difference, /// Mask formula: a * b Intersect, /// Mask formula: max(a, b) Lighten, /// Mask formula: a - b Subtract, } impl Default for MaskMode { fn default() -> Self { Self::Add } } /// Matting blends two images (a into b) based on the features of a matte image. /// /// TODO: This feature isn't fully implemented yet #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)] pub enum MatteMode { /// Matte formula: alpha = min(a, matte) /// color = a * alpha; Alpha, /// Matte formula: alpha = min(a, 1 - matte) /// color = a * alpha; AlphaInverted, /// Matte formula: gray = hsl-based gray function /// alpha = min(a, gray(matte)) /// color = a * alpha; Luminance, /// Matte formula: gray = hsl-based gray function /// alpha = min(a, 1 - gray(matte)) /// color = a * alpha; LuminanceInverted, } impl Default for MatteMode { fn default() -> Self { Self::Alpha } }