1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
//! This module contains a bottom-up (LR(1)) parser for our regular expression data type.
//!
//!
//! ### Grammar
//!
//! The parser is implemented based on a LR parse table generated from [an online generator](https://jsmachines.sourceforge.net/machines/lr1.html), using the following grammar.
//!
//! ```bnf
//!  0: S -> E
//!  1: E -> 0
//!  2: E -> e
//!  3: E -> l
//!  4: E -> ~ E
//!  5: E -> E *
//!  6: E -> E +
//!  7: E -> E ?
//!  8: E -> E E
//!  9: E -> E | E
//! 10: E -> E & E
//! ```
//!
//! Here, `l` should be interpreted as label literals and parenthesized expressions.
//! We do not spell out the parenthesized expressions because the Rust lexer can automatically handle those for us.
//!
//!
//! ### Disambiguation
//!
//! To disambiguate this grammar, we used the same operator priorities as [Statix](https://github.com/metaborg/nabl/blob/802559782da2216b66d290f90179c2ac8f21ba3f/statix.lang/syntax/statix/lang/Core.sdf3#L218-L221):
//!
//! | Operator            | Precedence Level | Associativity |
//! | :-----------------: | :--------------- | ------------- |
//! | `~`                 | 4                |               |
//! | `*`                 | 4                |               |
//! | `+`                 | 4                |               |
//! | `?`                 | 4                |               |
//! | (concat)            | 3                | (right)       |
//! | `&`                 | 2                | (left)        |
//! | <code>\|</code>     | 1                | (left)        |
//!
//!
//! ### Parse Table
//!
//! The LR parse table generated from this grammar is as follows (closure sets on the documentation of [`ParseState`]):
//!
//! | State | `0`       | `e`        | `l`        | `~`        | `*`        | `+`        | `?`        | <code>\|</code> | `&`        | `$`        |   | `S` | `E`   |
//! | ----- | --------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | --------------- | ---------- | ---------- | - | --- | ----- |
//! | 0     | `s2`      | `s3`       | `s4`       | `s5`       |            |            |            |                 |            |            |   |     | `1`   |
//! | 1     | `s2`      | `s3`       | `s4`       | `s5`       | `s6`       | `s7`       | `s8`       | `s10`           | `s11`      | `ACC`      |   |     | `9`   |
//! | 2     | `r1`      | `r1`       | `r1`       | `r1`       | `r1`       | `r1`       | `r1`       | `r1`            | `r1`       | `r1`       |   |     |       |
//! | 3     | `r2`      | `r2`       | `r2`       | `r2`       | `r2`       | `r2`       | `r2`       | `r2`            | `r2`       | `r2`       |   |     |       |
//! | 4     | `r3`      | `r3`       | `r3`       | `r3`       | `r3`       | `r3`       | `r3`       | `r3`            | `r3`       | `r3`       |   |     |       |
//! | 5     | `s2`      | `s3`       | `s4`       | `s5`       |            |            |            |                 |            |            |   |     | `12`  |
//! | 6     | `r5`      | `r5`       | `r5`       | `r5`       | `r5`       | `r5`       | `r5`       | `r5`            | `r5`       | `r5`       |   |     |       |
//! | 7     | `r6`      | `r6`       | `r6`       | `r6`       | `r6`       | `r6`       | `r6`       | `r6`            | `r6`       | `r6`       |   |     |       |
//! | 8     | `r7`      | `r7`       | `r7`       | `r7`       | `r7`       | `r7`       | `r7`       | `r7`            | `r7`       | `r7`       |   |     |       |
//! | 9     | `s2`[^9l] | `s3`[^9l]  | `s4`[^9l]  | `s5`[^9n]  | `s6`[^9n]  | `s7`[^9n]  | `s8`[^9n]  | `r8`[^9o]       | `r8`[^9a]  | `r8`       |   |     | `9`   |
//! | 10    | `s2`      | `s3`       | `s4`       | `s5`       |            |            |            |                 |            |            |   |     | `13`  |
//! | 11    | `s2`      | `s3`       | `s4`       | `s5`       |            |            |            |                 |            |            |   |     | `14`  |
//! | 12    | `r4`[^120]| `r4`[^12e] | `r4`[^12l] | `r4`[^12n] | `AMB`[^2b] | `AMB`[^2b] | `AMB`[^2b] | `r4`[^12o]      | `r4`[^12a] | `r4`       |   |     | `9`   |
//! | 13    | `s2`[^3l] | `s3`[^3l]  | `s4`[^3l]  | `s5`[^3l]  | `s6`[^3l]  | `s7`[^3l]  | `s8`[^3l]  | `r9`[^3o]       | `s11`[^3l] | `r9`       |   |     | `9`   |
//! | 14    | `s2`[^4l] | `s3`[^4l]  | `s4`[^4l]  | `s5`[^4l]  | `s6`[^4l]  | `s7`[^4l]  | `s8`[^4l]  | `r10`[^4o]      | `r10`[^4a] | `r10`      |   |     | `9`   |
//!
//! The first segment being the ACTION-table, the last two columns being the GOTO-table.
//! In the action table, actions as `sX` means: shift the symbol onto the stack, transition to state `X`.
//! Actions like `rY` mean: reduce the top of the stack using production `Y` (from original grammar).
//! The `ACC` action means accepting the current input.
//! The `AMB` action is emitting an error that the current expression is ambiguous.
//! Empty boxes are parse errors: the tokens are not expected at that position.
//! The resolution of ambiguities (positions in the table where both a shift and a reduce action are possible (shift/reduce conflicts)) are annotated and their resolution motivated in the footnotes.
//! For more explanation on constructing the parse table, see [these slides](https://www.eecis.udel.edu/~cavazos/cisc672-fall08/lectures/Lecture-10.pdf).
//!
//!
//! ### Implementation
//!
//! This module contains a lexer ([`Lexer`]), which is a wrapper around a [`ParseStream`] that emits [`Token`]s (the tokens of our language).
//! Using [`parenthesized`], we recursively parse regular expressions inside parentheses.
//!
//! The parser implementation ([`Parser`]) corresponds to the parse table in the following way:
//! - The [`Parser::shift`] function implements shifting and transitioning to some state.
//! - The [`Parser::goto`] function implements the GOTO-table.
//! - The [`Parser::accept`] function accepts the input, leaving the resulting regular expression on the stack.
//! - The [`Parser::step`] function performs a parsing step per invocation (i.e., it implements the ACTION-table).
//!
//! The reduction rules each have their own function as well:
//! - `r1`: [`Parser::reduce_zero`]
//! - `r2`: [`Parser::reduce_epsilon`]
//! - `r3`: [`Parser::reduce_symbol`] (also parses parenthesized expressions)
//! - `r4`: [`Parser::reduce_neg`]
//! - `r5`: [`Parser::reduce_repeat`]
//! - `r6`: [`Parser::reduce_plus`]
//! - `r7`: [`Parser::reduce_optional`]
//! - `r8`: [`Parser::reduce_concat`]
//! - `r9`: [`Parser::reduce_or`]
//! - `r10`: [`Parser::reduce_and`]
//!
//! The parser does not have error recovery.
//!
//!
//! [^9l]: shift/reduce conflict with `r8`: resolved this way because concatenation is right-associative, so we need to shift more before we can reduce.
//!
//! [^9n]: shift/reduce conflict with `r8`: resolved this way because `~`/`*`/`+`/`?` have priority over concatenation.
//!
//! [^9o]: shift/reduce conflict with `s8`: resolved as `r8` because concatenation has priority over `|`.
//!
//! [^9a]: shift/reduce conflict with `s10`: resolved as `r8` because concatenation has priority over `&`.
//!
//!
//!
//! [^120]: shift/reduce conflict with `s2`: resolved as `r4` because negation has priority over concatenation.
//!
//! [^12e]: shift/reduce conflict with `s3`: resolved as `r4` because negation has priority over concatenation.
//!
//! [^12l]: shift/reduce conflict with `s4`: resolved as `r4` because negation has priority over concatenation.
//!
//! [^12n]: shift/reduce conflict with `s2`: resolved as `r4` because negation has priority over concatenation.
//!
//! [^2b]:  shift/reduce conflict with `s2`: resolved as an _ambiguity error_ because there is no priority between `~` (prefix operator) and `*`/`+`/`?` (postfix operators).
//!
//! [^12o]: shift/reduce conflict with `s2`: resolved as `r4` because negation has priority over `|`.
//!
//! [^12a]: shift/reduce conflict with `s2`: resolved as `r4` because negation has priority over `&`.
//!
//!
//!
//! [^3l]: shift/reduce conflict with `r9`: resolved as a shift because `|` has lowest priority.
//!
//! [^3o]: shift/reduce conflict with `s10`: resolved as a `r9` because `|` is left-associative.
//!
//!
//!
//! [^4l]: shift/reduce conflict with `r10`: resolved as a shift because `&` has lower priority than all operators, except for `|`.
//!
//! [^4o]: shift/reduce conflict with `s10`: resolved as a `r10` because `&` is left-associative.
//!
//! [^4a]: shift/reduce conflict with `s11`: resolved as a `r10` because `&` has priority over `|`.

use crate::regex::Symbol;
use crate::Regex;
use std::fmt::Debug;
use std::mem;
use std::ops::Deref;
use std::rc::Rc;
use syn::parse::{Parse, ParseStream};
use syn::{parenthesized, Path, Token};

#[derive(Clone, PartialEq, Eq)]
enum Token {
    Zero,
    Epsilon,
    Neg,
    Repeat,
    Plus,
    Optional,
    Or,
    And,
    Regex(Rc<Regex>), // used for labels and parenthesized expressions
    End,
}

impl Debug for Token {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Zero => write!(f, "'0'"),
            Self::Epsilon => write!(f, "'e'"),
            Self::Neg => write!(f, "'~'"),
            Self::Repeat => write!(f, "'*'"),
            Self::Plus => write!(f, "'+'"),
            Self::Optional => write!(f, "'?'"),
            Self::Or => write!(f, "'|'"),
            Self::And => write!(f, "'&'"),
            Self::Regex(regex) => write!(f, "{:?}", *regex),
            Self::End => write!(f, "'$'"),
        }
    }
}

struct Lexer<'a> {
    input: ParseStream<'a>,
    top: Token,
}

impl<'a> Lexer<'a> {
    /// Returns the next [`Token`] from the `input`.
    fn scan(input: ParseStream<'a>) -> syn::Result<Token> {
        if input.is_empty() {
            return Ok(Token::End);
        }

        // Rust performs parenthesis matching: leverage that here.
        if input.peek(syn::token::Paren) {
            let inner;
            parenthesized!(inner in input);
            return Regex::parse(&inner).map(|re| Token::Regex(Rc::new(re)));
        }

        // Scan '0' token
        if let Ok(val) = input.parse::<syn::LitInt>() {
            if let Ok(0) = val.base10_parse() {
                return Ok(Token::Zero);
            }
        }

        // Scan 'e' and names
        if let Ok(name) = input.parse::<Path>() {
            if name.is_ident("e") {
                return Ok(Token::Epsilon);
            } else {
                let regex = Regex::Symbol(Symbol { name }.into());
                return Ok(Token::Regex(Rc::new(regex)));
            }
        }

        // Scan '~' token
        if input.parse::<Token![~]>().is_ok() {
            return Ok(Token::Neg);
        }

        // Scan '*' token
        if input.parse::<Token![*]>().is_ok() {
            return Ok(Token::Repeat);
        }

        // Scan '+' token
        if input.parse::<Token![+]>().is_ok() {
            return Ok(Token::Plus);
        }

        // Scan '?' token
        if input.parse::<Token![?]>().is_ok() {
            return Ok(Token::Optional);
        }

        // Scan '|' token
        if input.parse::<Token![|]>().is_ok() {
            return Ok(Token::Or);
        }

        // Scan '&' token
        if input.parse::<Token![&]>().is_ok() {
            return Ok(Token::And);
        }

        Err(syn::Error::new(
            input.span(),
            "expected '0', 'e', '~', '*', '+', '?', '|', '&', '(' or label here.",
        ))
    }

    /// Peeks the first token in the stream.
    fn peek(&self) -> &Token {
        &self.top
    }

    /// Advances lexer to the next token.
    fn next(&mut self) -> syn::Result<Token> {
        Ok(mem::replace(&mut self.top, Self::scan(self.input)?))
    }

    /// Returns the current position in the stream (mainly for emitting errors).
    fn span(&self) -> proc_macro2::Span {
        self.input.span()
    }
}

/// Enumeration of the states of the parser.
///
/// The state names are chosen to represent the items currently on top of the stack.
/// For example `FooBar` means that a `Bar` symbol is on top of the stack, and a `Foo` right below.
/// Ordinal numbers correspond to the state numbers in top-level docs.
///
/// The documentation of each item contains its closure set.
/// If not documented, the lookahead is `$/*/+/?/0/e/l/~/|/&` (i.e., all tokens).
#[derive(Clone, Copy, Debug)]
enum ParseState {
    /// Initial state of the parser.
    ///
    /// Closure set:
    /// - [S -> .E, $]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    Initial = 0,
    /// State after reducing a top-level regular expression.
    /// Might accept when the end of the stream is reached, or continue parsing a infix/post-fix operation.
    ///
    /// Closure set:    
    /// - [S -> E., $]
    /// - [E -> E.*]
    /// - [E -> E.+]
    /// - [E -> E.?]
    /// - [E -> E.E]
    /// - [E -> E.| E]
    /// - [E -> E.& E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    Regex = 1,
    /// State after shifting a `0`: will always reduce using `E -> 0`.
    ///
    /// Closure set:
    /// - [E -> 0.]
    Zero = 2,
    /// State after shifting a `e`: will always reduce using `E -> e`.
    ///
    /// Closure set:
    /// - [E -> e.]
    Epsilon = 3,
    /// State after shifting a `l` or parenthesized expression: will always reduce using `E -> l` or `E -> ( E )`.
    ///
    /// Closure set:
    /// - [E -> l.]
    /// - [E -> ( E ).] (manually added)
    Symbol = 4,
    /// State after shifting a `~`.
    ///
    /// Closure set:
    /// - [E -> ~.E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    Neg = 5,
    /// State after shifting a `*`.
    /// Will always reduce using `E -> E *`.
    ///
    /// Closure set:
    /// - [E -> E *.]
    RegexRepeat = 6,
    /// State after shifting a `+`.
    /// Will always reduce using `E -> E +`.
    ///
    /// Closure set:
    /// - [E -> E +.]
    RegexPlus = 7,
    /// State after shifting a `?`.
    /// Will always reduce using `E -> E ?`.
    ///
    /// Closure set:
    /// - [E -> E ?.]
    RegexOptional = 8,
    /// State two fully reduced regular expressions are at the top of the stack.
    /// Can further reduce concat operations, or shift inputs with higher priority.
    ///
    /// Closure set:
    /// - [E -> E E.]
    /// - [E -> E.*]
    /// - [E -> E.+]
    /// - [E -> E.?]
    /// - [E -> E.E]
    /// - [E -> E.| E]
    /// - [E -> E.& E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    RegexRegex = 9,
    /// State after shifting a `|`.
    /// Can reduce using `E -> E | E`, or shift inputs with higher priority.
    ///
    /// Closure set:
    /// - [E -> E |.E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    RegexOr = 10,
    /// State after shifting a `&`.
    /// Can reduce using `E -> E & E`, or shift inputs with higher priority.
    ///
    /// Closure set:
    /// - [E -> E &.E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    RegexAnd = 11,
    /// State when a negation operator and a RE are at the top of the stack.
    /// Can reduce using the `E -> ~ E` production, or give an ambiguity error with other unary operators.
    ///
    /// Closure set:
    /// - [E -> ~ E.]
    /// - [E -> E.*]
    /// - [E -> E.+]
    /// - [E -> E.?]
    /// - [E -> E.E]
    /// - [E -> E.| E]
    /// - [E -> E.& E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    NegRegex = 12,
    /// State when an RE, an or-operator and another RE are at the top of the stack.
    /// Can reduce using the `E -> E | E` production, or shift higher priority operators.
    ///
    /// Closure set:
    /// - [E -> E | E.]
    /// - [E -> E.*]
    /// - [E -> E.+]
    /// - [E -> E.?]
    /// - [E -> E.E]
    /// - [E -> E.| E]
    /// - [E -> E.& E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    RegexOrRegex = 13,
    /// State when an RE, an and-operator and another RE are at the top of the stack.
    /// Can reduce using the `E -> E & E` production, or shift higher priority operators.
    ///
    /// Closure set:
    /// - [E -> E & E.]
    /// - [E -> E.*]
    /// - [E -> E.+]
    /// - [E -> E.?]
    /// - [E -> E.E]
    /// - [E -> E.| E]
    /// - [E -> E.& E]
    /// - [E -> .0]
    /// - [E -> .e]
    /// - [E -> .l]
    /// - [E -> .~ E]
    /// - [E -> .E *]
    /// - [E -> .E +]
    /// - [E -> .E ?]
    /// - [E -> .E E]
    /// - [E -> .E | E]
    /// - [E -> .E & E]
    RegexAndRegex = 14,
}

/// Segment of the parse stack.
///
/// In regular LR parsing literature, the parse stack is an alternating sequence of states and symbols.
/// It starts with the initial state [`ParseState::Initial`], and always (except between a reduction and a goto) has a state on top.
/// We differ from this representation in two ways:
/// 1. We do not explicitly push the initial state to the stack, but implicitly assume it in [`Parser::state`].
/// 2. We combine the reduce and goto actions.
///    The reduce actions do not push the result to the stack, but pass it to [`Parser::goto`] directly.
///    [`Parser::goto`] computes the next state based on the top of the stack and the result that was passed in, and pushes the result and the new state to the stack.
///
/// This allows us to combine the stack elements as 2-tuples, getting rid of a lot of runtime checks & pattern matching.
#[derive(Clone)]
struct StackSegment {
    state: ParseState,
    token: Token,
}

impl Debug for StackSegment {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "<{:?}, {:?}>", self.state, self.token)
    }
}

struct Parser<'a> {
    lexer: Lexer<'a>,
    parse_stack: Vec<StackSegment>,
}

impl<'a> Parser<'a> {
    /// Initializer a new parser for the underlying token stream.
    fn init(input: ParseStream<'a>) -> syn::Result<Self> {
        let lexer = Lexer {
            input,
            top: Lexer::scan(input)?,
        };
        Ok(Self {
            lexer,
            parse_stack: vec![],
        })
    }

    /// Shift action (standard in LR parsers).
    ///
    /// Pushes current token to the stack, and transitions to `new_state`.
    fn shift(&mut self, new_state: ParseState) -> syn::Result<bool> {
        let next_token = self.lexer.next()?;
        self.parse_stack.push(StackSegment {
            state: new_state,
            token: next_token,
        });
        Ok(false) // not (yet) in accepting state
    }

    /// Get last [state](ParseState) shifted to the stack.
    ///
    /// Defaults to the (implicit) [initial state](ParseState::Initial) in case of an empty stack.
    fn state(&self) -> ParseState {
        self.parse_stack
            .last()
            .map(|ss| ss.state)
            .unwrap_or(ParseState::Initial) // implicitly assume State 0 on bottom of stack.
    }

    /// Pop last state and token from the stack.
    fn pop_stack(&mut self) -> syn::Result<StackSegment> {
        if let Some(segment) = self.parse_stack.pop() {
            Ok(segment)
        } else {
            self.internal_error("expected non-empty stack")
        }
    }

    /// Get last [token](Token) shifted to the stack.
    fn pop_stack_token(&mut self) -> syn::Result<Token> {
        self.pop_stack().map(|ss| ss.token)
    }

    /// Get last token shifted to the stack, and assert it is a [`Token::Regex`] variant.
    fn pop_stack_regex(&mut self) -> syn::Result<Rc<Regex>> {
        if let Token::Regex(regex) = self.pop_stack_token()? {
            Ok(regex)
        } else {
            self.internal_error("expected regex on top of stack")
        }
    }

    /// Get last token shifted to the stack, and assert it is a particular `expected` [`Token`].
    fn expect_token(&mut self, expected: Token) -> syn::Result<()> {
        if expected == self.pop_stack_token()? {
            Ok(())
        } else {
            self.internal_error("expected other token on top of stack")
        }
    }

    // reduce atoms

    fn reduce_atom(&mut self, expected: Token, result: Regex) -> syn::Result<bool> {
        self.expect_token(expected)?;
        self.goto(Rc::new(result))
    }

    /// Reduce `E -> 0` preduction
    fn reduce_zero(&mut self) -> syn::Result<bool> {
        self.reduce_atom(Token::Zero, Regex::EmptySet)
    }

    /// Reduce `E -> e` preduction.
    fn reduce_epsilon(&mut self) -> syn::Result<bool> {
        self.reduce_atom(Token::Epsilon, Regex::EmptyString)
    }

    /// Reduce `E -> l` and `E -> ( E )` productions (NO-OP: symbol is shared).
    fn reduce_symbol(&mut self) -> syn::Result<bool> {
        let re = self.pop_stack_regex()?;
        self.goto(re)
    }

    // reduce unary operators

    fn reduce_unary_prefix(
        &mut self,
        expected: Token,
        build: impl Fn(Rc<Regex>) -> Regex,
    ) -> syn::Result<bool> {
        let re = self.pop_stack_regex()?;
        self.reduce_atom(expected, build(re))
    }

    /// Reduce `E -> ~ E` production.
    fn reduce_neg(&mut self) -> syn::Result<bool> {
        self.reduce_unary_prefix(Token::Neg, Regex::Complement)
    }

    fn reduce_unary_postfix(
        &mut self,
        expected: Token,
        build: impl Fn(Rc<Regex>) -> Regex,
    ) -> syn::Result<bool> {
        self.expect_token(expected)?;
        let re = self.pop_stack_regex()?;
        self.goto(Rc::new(build(re)))
    }

    /// Reduce `E -> E *` production.
    fn reduce_repeat(&mut self) -> syn::Result<bool> {
        self.reduce_unary_postfix(Token::Repeat, Regex::Repeat)
    }

    /// Reduce `E -> E +` production.
    ///
    /// Immediately desugars `E1 +` to `E1 E1*`.
    fn reduce_plus(&mut self) -> syn::Result<bool> {
        self.reduce_unary_postfix(Token::Plus, |re| {
            Regex::Concat(re.clone(), Rc::new(Regex::Repeat(re)))
        })
    }

    /// Reduce `E -> E ?` production.
    ///
    /// Immediately desugars `E1 ?` to `e | E1`.
    fn reduce_optional(&mut self) -> syn::Result<bool> {
        self.reduce_unary_postfix(Token::Optional, |re| {
            Regex::Or(Rc::new(Regex::EmptyString), re)
        })
    }

    // reduce binary operators

    /// Reduce `E -> E E` production.
    fn reduce_concat(&mut self) -> syn::Result<bool> {
        // right-hand-side is on top of stack ...
        let r = self.pop_stack_regex()?;
        let l = self.pop_stack_regex()?;
        self.goto(Rc::new(Regex::Concat(l, r)))
    }

    fn reduce_binary_infix(
        &mut self,
        expected: Token,
        build: impl Fn(Rc<Regex>, Rc<Regex>) -> Regex,
    ) -> syn::Result<bool> {
        // right-hand-side is on top of stack ...
        let r = self.pop_stack_regex()?;
        self.expect_token(expected)?;
        let l = self.pop_stack_regex()?;
        self.goto(Rc::new(build(l, r)))
    }

    /// Reduce `E -> E | E` production.
    fn reduce_or(&mut self) -> syn::Result<bool> {
        self.reduce_binary_infix(Token::Or, Regex::Or)
    }

    /// Reduce `E -> E & E` production.
    fn reduce_and(&mut self) -> syn::Result<bool> {
        self.reduce_binary_infix(Token::And, Regex::And)
    }

    /// Implement GOTO-table.
    ///
    /// Called after a reduce operation.
    /// The `result` argument is the result of the reduction (which is always of sort `E`).
    ///
    /// It peeks the state `S` on top of the stack (assuming `0` in case of an empty stack).
    /// Then it finds the `GOTO[S, E]` entry, and pushes the result and the new state to the stack.
    fn goto(&mut self, result: Rc<Regex>) -> syn::Result<bool> {
        // compute state that has a new regex pushed to the stack
        let state = match self.state() {
            ParseState::Initial => ParseState::Regex,
            ParseState::Regex => ParseState::RegexRegex,
            ParseState::Neg => ParseState::NegRegex,
            ParseState::RegexRegex => ParseState::RegexRegex,
            ParseState::RegexOr => ParseState::RegexOrRegex,
            ParseState::RegexAnd => ParseState::RegexAndRegex,
            ParseState::NegRegex => ParseState::RegexRegex, // redundant: negations are always reduced eagerly
            ParseState::RegexOrRegex => ParseState::RegexRegex,
            ParseState::RegexAndRegex => ParseState::RegexRegex,
            _ => return self.internal_error("cannot perform 'goto' action on current state"),
        };
        self.parse_stack.push(StackSegment {
            state,
            token: Token::Regex(result),
        });
        Ok(false)
    }

    /// Accepts the input.
    fn accept() -> syn::Result<bool> {
        Ok(true)
    }

    fn build_error(&self, msg: &str) -> syn::Error {
        syn::Error::new(self.lexer.span(), msg)
    }

    fn error<T>(&self, msg: &str) -> syn::Result<T> {
        Err(self.build_error(msg))
    }

    fn internal_error<T>(&self, msg: &str) -> syn::Result<T> {
        Err(self.build_error(&format!("internal parsing error: {}", msg)))
    }

    /// Implementation of the ACTION-table.
    fn step(&mut self) -> syn::Result<bool> {
        match self.state() {
            ParseState::Initial | ParseState::Neg | ParseState::RegexOr | ParseState::RegexAnd => {
                match self.lexer.peek() {
                    Token::Zero => self.shift(ParseState::Zero),
                    Token::Epsilon => self.shift(ParseState::Epsilon),
                    Token::Regex(_) => self.shift(ParseState::Symbol),
                    Token::Neg => self.shift(ParseState::Neg),
                    _ => self.error(
                        "expected '0', 'e', '~', label or parenthesized regular expression here",
                    ),
                }
            }
            ParseState::Regex => match self.lexer.peek() {
                Token::Zero => self.shift(ParseState::Zero),
                Token::Epsilon => self.shift(ParseState::Epsilon),
                Token::Regex(_) => self.shift(ParseState::Symbol),
                Token::Neg => self.shift(ParseState::Neg),
                Token::Repeat => self.shift(ParseState::RegexRepeat),
                Token::Plus => self.shift(ParseState::RegexPlus),
                Token::Optional => self.shift(ParseState::RegexOptional),
                Token::Or => self.shift(ParseState::RegexOr),
                Token::And => self.shift(ParseState::RegexAnd),
                Token::End => Self::accept(),
            },
            ParseState::Zero => self.reduce_zero(),
            ParseState::Epsilon => self.reduce_epsilon(),
            ParseState::Symbol => self.reduce_symbol(),
            ParseState::RegexRepeat => self.reduce_repeat(),
            ParseState::RegexPlus => self.reduce_plus(),
            ParseState::RegexOptional => self.reduce_optional(),
            ParseState::RegexRegex => match self.lexer.peek() {
                // concat is right-associative, so shift in case of a new literal/pre-fix operator
                Token::Zero => self.shift(ParseState::Zero),
                Token::Epsilon => self.shift(ParseState::Epsilon),
                Token::Regex(_) => self.shift(ParseState::Symbol),
                Token::Neg => self.shift(ParseState::Neg),
                // post-fix operators have priority over concat, so shift here
                Token::Repeat => self.shift(ParseState::RegexRepeat),
                Token::Plus => self.shift(ParseState::RegexPlus),
                Token::Optional => self.shift(ParseState::RegexOptional),
                // concat has priority over '|' and  '&', so reduce here
                Token::Or => self.reduce_concat(),
                Token::And => self.reduce_concat(),
                Token::End => self.reduce_concat(),
            },
            ParseState::NegRegex => match self.lexer.peek() {
                // neg has top priority, but is ambiguous with posf-fix operators.
                Token::Zero => self.reduce_neg(),
                Token::Epsilon => self.reduce_neg(),
                Token::Regex(_) => self.reduce_neg(),
                Token::Neg => self.reduce_neg(),
                Token::Repeat => self.error(
                    "ambiguous regex: simultaneous use of '~' prefix and '*' postfix operator",
                ),
                Token::Plus => self.error(
                    "ambiguous regex: simultaneous use of '~' prefix and '+' postfix operator",
                ),
                Token::Optional => self.error(
                    "ambiguous regex: simultaneous use of '~' prefix and '?' postfix operator",
                ),
                Token::Or => self.reduce_neg(),
                Token::And => self.reduce_neg(),
                Token::End => self.reduce_neg(),
            },
            ParseState::RegexOrRegex => match self.lexer.peek() {
                // or has lowest priority, so shift in any case
                Token::Zero => self.shift(ParseState::Zero),
                Token::Epsilon => self.shift(ParseState::Epsilon),
                Token::Regex(_) => self.shift(ParseState::Symbol),
                Token::Neg => self.shift(ParseState::Neg),
                Token::Repeat => self.shift(ParseState::RegexRepeat),
                Token::Plus => self.shift(ParseState::RegexPlus),
                Token::Optional => self.shift(ParseState::RegexOptional),
                // or is left-associative, so reduce eagerly
                Token::Or => self.reduce_or(),
                Token::And => self.shift(ParseState::RegexAnd),
                Token::End => self.reduce_or(),
            },
            ParseState::RegexAndRegex => match self.lexer.peek() {
                // '&' has priority over '|' only, so shift in any other case
                Token::Zero => self.shift(ParseState::Zero),
                Token::Epsilon => self.shift(ParseState::Epsilon),
                Token::Regex(_) => self.shift(ParseState::Symbol),
                Token::Neg => self.shift(ParseState::Neg),
                Token::Repeat => self.shift(ParseState::RegexRepeat),
                Token::Plus => self.shift(ParseState::RegexPlus),
                Token::Optional => self.shift(ParseState::RegexOptional),
                // has priority over '|'
                Token::Or => self.reduce_and(),
                // and is left-recursive, so reduce eagerly
                Token::And => self.reduce_and(),
                Token::End => self.reduce_and(),
            },
        }
    }

    /// Extracts parsing result from the stack.
    fn finalize(mut self) -> syn::Result<Regex> {
        let regex = self.pop_stack_regex()?;
        if self.parse_stack.is_empty() {
            Ok(regex.deref().clone())
        } else {
            self.internal_error("residual input after parsing finished.")
        }
    }

    /// Entry point: parses the `input` to a [`Regex`].
    pub fn parse_regex(input: ParseStream) -> syn::Result<Regex> {
        let mut parser = Parser::init(input)?;
        let mut accept = false;
        while !accept {
            accept = parser.step()?
        }
        parser.finalize()
    }
}

impl Parse for Regex {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        Parser::parse_regex(input)
    }
}

#[cfg(test)]
mod tests {
    // Most test cases derived from
    // https://github.com/metaborg/nabl/blob/master/statix.test/syntax/regex.spt

    use crate::{parse_regex, Regex::*};
    use std::rc::Rc;

    #[test]
    fn test_symbols() {
        assert_eq!(parse_regex("A").unwrap(), Symbol(Rc::new("A".into())));
        assert_eq!(parse_regex("a").unwrap(), Symbol(Rc::new("a".into())));
        assert_eq!(
            parse_regex("CamelCase").unwrap(),
            Symbol(Rc::new("CamelCase".into()))
        );
        assert_eq!(parse_regex("0").unwrap(), EmptySet);
        assert_eq!(parse_regex("e").unwrap(), EmptyString);
    }
    #[test]
    fn test_operators() {
        assert_eq!(
            parse_regex("A*").unwrap(),
            Repeat(Rc::new(Symbol(Rc::new("A".into()))))
        );
        assert_eq!(
            parse_regex("A+").unwrap(),
            Concat(
                Rc::new(Symbol(Rc::new("A".into()))),
                Rc::new(Repeat(Rc::new(Symbol(Rc::new("A".into())))))
            )
        );
        assert_eq!(
            parse_regex("A?").unwrap(),
            Or(Rc::new(EmptyString), Rc::new(Symbol(Rc::new("A".into()))))
        );
        assert_eq!(
            parse_regex("A B").unwrap(),
            Concat(
                Rc::new(Symbol(Rc::new("A".into()))),
                Rc::new(Symbol(Rc::new("B".into())))
            )
        );
        assert_eq!(
            parse_regex("A | B").unwrap(),
            Or(
                Rc::new(Symbol(Rc::new("A".into()))),
                Rc::new(Symbol(Rc::new("B".into())))
            )
        );
        assert_eq!(
            parse_regex("A & B").unwrap(),
            And(
                Rc::new(Symbol(Rc::new("A".into()))),
                Rc::new(Symbol(Rc::new("B".into())))
            )
        );
    }
    #[test]
    fn test_disambiguation() {
        // or left-associative
        assert_eq!(
            parse_regex("A | B | C").unwrap(),
            Or(
                Rc::new(Or(
                    Rc::new(Symbol(Rc::new("A".into()))),
                    Rc::new(Symbol(Rc::new("B".into())))
                )),
                Rc::new(Symbol(Rc::new("C".into())))
            )
        );

        // closure < concat
        assert_eq!(
            parse_regex("A B*").unwrap(),
            Concat(
                Rc::new(Symbol(Rc::new("A".into()))),
                Rc::new(Repeat(Rc::new(Symbol(Rc::new("B".into()))))),
            )
        );

        // nested post-fix operators
        assert_eq!(
            parse_regex("A*?+").unwrap(),
            parse_regex("((A*)?)+").unwrap()
        );

        // not & closure < or
        assert_eq!(
            parse_regex("~A | B*").unwrap(),
            Or(
                Rc::new(Complement(Rc::new(Symbol(Rc::new("A".into()))))),
                Rc::new(Repeat(Rc::new(Symbol(Rc::new("B".into())))))
            )
        );

        // and < or
        assert_eq!(
            parse_regex("~A | B* & C?").unwrap(),
            parse_regex("(~A) | ((B*) & C?)").unwrap()
        );
    }

    #[test]
    fn neg_should_have_argument() {
        assert!(parse_regex("A ~").is_err());
    }

    #[test]
    fn postfix_op_should_have_lhs() {
        assert!(parse_regex("* A").is_err());
        assert!(parse_regex("+ A").is_err());
        assert!(parse_regex("? A").is_err());
    }

    #[test]
    fn infix_op_should_have_lhs() {
        assert!(parse_regex("& A").is_err());
        assert!(parse_regex("| A").is_err());
    }

    #[test]
    fn infix_op_should_have_rhs() {
        assert!(parse_regex("A &").is_err());
        assert!(parse_regex("A |").is_err());
    }

    #[test]
    fn infix_op_no_double() {
        assert!(parse_regex("A & & A A").is_err());
        assert!(parse_regex("A | | A A").is_err());
        assert!(parse_regex("A | & A A").is_err());
        assert!(parse_regex("A & | A A").is_err());
    }

    #[test]
    fn infix_postfix_mix() {
        assert!(parse_regex("A & * A A").is_err());
        assert!(parse_regex("A & + A A").is_err());
        assert!(parse_regex("A & ? A A").is_err());
        assert!(parse_regex("A | * A A").is_err());
        assert!(parse_regex("A | + A A").is_err());
        assert!(parse_regex("A | ? A A").is_err());
    }
}