scnr/scanner.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
use std::{fmt::Debug, path::Path};
use log::trace;
use crate::{internal::ScannerNfaImpl, FindMatches, Match, Result, ScannerMode};
/// A trait to switch between scanner modes.
///
/// This trait is used to switch between different scanner modes from a parser's perspective.
/// The parser can set the current scanner mode to switch to a different set of DFAs resp. NFAs, for
/// short called Finite State Machines, FSMs.
/// Usually, the scanner mode is changed by the scanner itself based on the transitions defined
/// in the active scanner mode.
///
/// It is discouraged to use a mix of scanner induced mode changes and parser induced mode changes.
/// This can lead to unexpected behavior and is not recommended.
///
/// Only several kinds of parsers are able to handle mode changes as part of the grammar.
/// Note that 'part of the grammar' means that the mode changes are part of the parser's state
/// machine and not anything implemented in semantic actions.
///
/// For example, an LL parser is able to handle scanner mode switches in the grammar because it
/// always 'knows' the next production to parse. If the production contains a scanner mode switch,
/// the parser can switch the scanner mode before scanning the next token.
///
/// A LR parser is not able to handle mode changes in the grammar because it does not know the next
/// production to parse. The parser has to decide which production to parse based on the lookahead
/// tokens. If the lookahead tokens contain a token that needed a scanner mode switch, the parser
/// is not able to switch the scanner mode before reading the next token.
///
/// An example of a parser induced mode changes is the `parol` parser generator. It is able to
/// handle mode changes in the grammar because it generates LL parsers. The parser is able to switch
/// the scanner mode before scanning the next token.
/// `parol` is also able to handle scanner induced mode changes stored as transitions in the scanner
/// modes. The scanner mode changes are then no part of the grammar but instead part of the scanner.
///
/// Furthermore `parol` can also generate LR parsers. In this case, the scanner mode changes are not
/// part of the grammar but instead part of the scanner. `parol` will prevent the LR grammar from
/// containing scanner mode changes.
///
/// See <https://github.com/jsinger67/parol> for more informationon about the `parol` parser
/// generator.
pub trait ScannerModeSwitcher {
/// Sets the current scanner mode.
fn set_mode(&mut self, mode: usize);
/// Returns the current scanner mode.
fn current_mode(&self) -> usize;
/// Returns the name of the scanner mode with the given index.
fn mode_name(&self, index: usize) -> Option<&str>;
}
/// Internal trait for scanner implemenations.
pub(crate) trait ScannerImplTrait: ScannerModeSwitcher + Debug + Send + Sync {
/// Returns an iterator over all non-overlapping matches.
/// The iterator yields a [`Match`] value until no more matches could be found.
fn find_iter<'h>(&self, input: &'h str) -> FindMatches<'h>;
/// Resets the scanner to the initial state.
fn reset(&mut self);
/// Executes a leftmost search and returns the first match that is found, if one exists.
/// It starts the search at the position of the given CharIndices iterator.
/// During the search, all DFAs or NFAs of the current scanner mode are tested in parallel
/// and the longest token with the lowest index is chosen
fn find_from(&mut self, char_indices: std::str::CharIndices) -> Option<Match>;
/// This function is used by [crate::internal::find_matches_impl::FindMatchesImpl::peek_n].
///
/// Executes a leftmost search and returns the first match that is found, if one exists.
/// It starts the search at the position of the given CharIndices iterator.
/// In contrast to `find_from`, this method does not execute a mode switch if a transition is
/// defined for the token type found.
///
/// The name `peek_from` is used to indicate that this method is used for peeking ahead.
/// It is called by the `peek_n` method of the `FindMatches` iterator on a copy of the
/// `CharIndices` iterator. Thus, the original `CharIndices` iterator is not advanced.
fn peek_from(&mut self, char_indices: std::str::CharIndices) -> Option<Match>;
/// Returns the number of the next scanner mode if a transition is defined for the token type.
/// If no transition is defined, None returned.
fn has_transition(&self, token_type: usize) -> Option<usize>;
/// Logs the compiled DFAs or NFAs as a Graphviz DOT file with the help of the `log` crate.
/// To enable debug output compliled automaton as dot file set the environment variable
/// `RUST_LOG` to `scnr::internal::scanner_impl=debug`.
fn log_compiled_automata_as_dot(&self, modes: &[ScannerMode]) -> Result<()>;
/// Generates the compiled DFAs or NFAs as a Graphviz DOT files.
/// The DOT files are written to the target folder.
/// The file names are derived from the scanner mode names and the index of the automaton.
fn generate_compiled_automata_as_dot(
&self,
modes: &[ScannerMode],
target_folder: &Path,
) -> Result<()>;
/// Clones the scanner implementation.
fn dyn_clone(&self) -> Box<dyn ScannerImplTrait>;
}
/// A Scanner.
/// It consists of multiple DFAs resp. NFAs that are used to search for matches.
///
/// Each NFA corresponds to a terminal symbol (token type) the lexer/scanner can recognize.
/// All these FSMs are advanced in parallel to search for matches.
/// It further constists of at least one scanner mode. Scanners support multiple scanner modes.
/// This feature is known from Flex as *Start conditions* and provides more
/// flexibility by defining several scanners for several parts of your grammar.
/// See <https://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html#SEC11>
/// for more information.
///
/// To create a scanner, you should use the `ScannerBuilder` to add scanner mode data.
/// At least one scanner mode must be added to the scanner. This single mode is usually named
/// `INITIAL`.
#[derive(Debug)]
pub struct Scanner {
pub(crate) inner: Box<dyn ScannerImplTrait>,
}
impl Scanner {
/// Creates a new scanner.
/// The scanner is created with the given scanner modes.
/// The ScannerImpl is created from the scanner modes.
pub fn try_new(scanner_modes: Vec<ScannerMode>) -> Result<Self> {
Ok(Scanner {
inner: Box::new(ScannerNfaImpl::try_from(scanner_modes)?),
})
}
/// Returns an iterator over all non-overlapping matches.
/// The iterator yields a [`Match`] value until no more matches could be found.
pub fn find_iter<'h>(&self, input: &'h str) -> FindMatches<'h> {
self.inner.find_iter(input)
}
/// Logs the compiled FSMs as a Graphviz DOT file with the help of the `log` crate.
/// To enable debug output compliled FSMs as dot file set the environment variable `RUST_LOG` to
/// `scnr::internal::scanner_impl=debug`.
pub fn log_compiled_automata_as_dot(&self, modes: &[ScannerMode]) -> Result<()> {
self.inner.log_compiled_automata_as_dot(modes)
}
/// Generates the compiled FSMs as a Graphviz DOT files.
/// The DOT files are written to the target folder.
/// The file names are derived from the scanner mode names and the index of the regarding FSM.
pub fn generate_compiled_automata_as_dot(
&self,
modes: &[ScannerMode],
target_folder: &Path,
) -> Result<()> {
self.inner
.generate_compiled_automata_as_dot(modes, target_folder)
}
}
impl ScannerModeSwitcher for Scanner {
/// Returns the current scanner mode.
fn current_mode(&self) -> usize {
self.inner.current_mode()
}
/// Sets the current scanner mode.
///
/// A parser can explicitly set the scanner mode to switch to a different set of FSMs.
/// Usually, the scanner mode is changed by the scanner itself based on the transitions defined
/// in the active scanner mode.
fn set_mode(&mut self, mode: usize) {
trace!("Set scanner mode to {}", mode);
self.inner.set_mode(mode);
}
/// Returns the name of the scanner mode with the given index.
/// If the index is out of bounds, None is returned.
fn mode_name(&self, index: usize) -> Option<&str> {
self.inner.mode_name(index)
}
}
// impl Debug for Scanner {
// fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// write!(f, "Scanner")
// }
// }
#[cfg(test)]
mod tests {
use std::fs;
use crate::{Pattern, ScannerBuilder};
use super::*;
fn init() {
let _ = env_logger::builder().is_test(true).try_init();
}
#[test]
fn test_scanner_builder_with_single_mode() {
init();
let scanner_mode = ScannerMode::new(
"INITIAL",
vec![
Pattern::new(r"\r\n|\r|\n".to_string(), 1),
Pattern::new(r"(//.*(\r\n|\r|\n))".to_string(), 3),
],
vec![(1, 1), (3, 1)],
);
let scanner = ScannerBuilder::new()
.add_scanner_mode(scanner_mode)
.build()
.unwrap();
assert_eq!(Some("INITIAL"), scanner.inner.mode_name(0));
}
#[test]
// Test the correct sharing of the current mode between the scanner and the scanner impl.
fn test_scanner_current_mode() {
init();
let scanner_mode = ScannerMode::new(
"INITIAL",
vec![
Pattern::new(r"\r\n|\r|\n".to_string(), 1),
Pattern::new(r"(//.*(\r\n|\r|\n))".to_string(), 3),
],
vec![(1, 1), (3, 1)],
);
let mut scanner = ScannerBuilder::new()
.add_scanner_mode(scanner_mode)
.build()
.unwrap();
// At the beginning, the scanner mode is 0.
assert_eq!(0, scanner.current_mode());
assert_eq!(0, scanner.inner.current_mode());
scanner.set_mode(1);
assert_eq!(1, scanner.current_mode());
assert_eq!(1, scanner.inner.current_mode());
let mut find_iter = scanner.find_iter("Hello\nWorld");
// The creation of a find_iter sets its own scanner mode to 0.
assert_eq!(0, find_iter.current_mode());
assert_eq!(1, scanner.current_mode());
assert_eq!(1, scanner.inner.current_mode());
assert_eq!(1, scanner.inner.dyn_clone().current_mode());
find_iter.set_mode(1);
assert_eq!(1, find_iter.current_mode());
scanner.set_mode(0);
assert_eq!(0, scanner.current_mode());
assert_eq!(0, scanner.inner.current_mode());
assert_eq!(0, scanner.inner.dyn_clone().current_mode());
}
// A test that checks the behavoir of the scanner when so called 'pathological regular expressions'
// are used. These are regular expressions that are very slow to match.
// The test checks if the scanner is able to handle these cases and does not hang.
struct TestData {
pattern: &'static str,
input: &'static str,
expected_match: Option<&'static str>,
}
const TEST_DATA: &[TestData] = &[
TestData {
pattern: r"((a*)*b)",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
TestData {
pattern: r"(a+)+b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
TestData {
pattern: r"(a+)+b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaa",
expected_match: None,
},
TestData {
pattern: r"(a|aa)+b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
TestData {
pattern: r"(a|a?)+b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
TestData {
pattern: r"((a|aa|aaa|aaaa|aaaaa)*)*b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
TestData {
pattern: r"((a*a*a*a*a*a*)*)*b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
TestData {
pattern: r"a{3}{3}*b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("aaaaaaaaaaaaaaaaaaaaaaaaaaab"),
},
// The following test case is only applicable for the NFA.
// The NFA is able to handle this case but needs a view seconds to compile the automaton.
TestData {
pattern: r"a{5}{5}{5}{5}{5}{5}*b",
input: "aaaaaaaaaaaaaaaaaaaaaaaaaaab",
expected_match: Some("b"),
},
];
#[test]
fn test_pathological_regular_expressions_dfa() {
init();
for (index, test) in TEST_DATA.iter().enumerate() {
let target_folder = format!(
"{}_{}",
concat!(
env!("CARGO_MANIFEST_DIR"),
"/target/test_pathological_regular_expressions_dfa"
),
index
);
// Delete all previously generated dot files.
let _ = fs::remove_dir_all(target_folder.clone());
// Create the target folder.
fs::create_dir_all(target_folder.clone()).unwrap();
let scanner_mode = ScannerMode::new(
"INITIAL",
vec![Pattern::new(test.pattern.to_string(), 1)],
vec![],
);
let scanner = ScannerBuilder::new()
.add_scanner_mode(scanner_mode.clone())
.build()
.unwrap();
scanner
.generate_compiled_automata_as_dot(&[scanner_mode], Path::new(&target_folder))
.unwrap();
let mut find_iter = scanner.find_iter(test.input);
let match1 = find_iter.next();
assert_eq!(
test.expected_match,
match1.map(|m| test.input.get(m.start()..m.end()).unwrap())
);
}
}
}