1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
//! Basic search strategies; see `BasicStrategyKind`.
use std::collections::{HashMap, HashSet};
use std::fmt::Debug;
use std::hash::Hash;
use indexmap::IndexMap;
use tracing::instrument;
use crate::search;
/// Implementation of `Graph` that represents the common case of a directed
/// acyclic graph in source control. You can implement this trait instead of
/// `Graph` (as there is a blanket implementation for `Graph`) and also make use
/// of `BasicStrategy`.
pub trait BasicSourceControlGraph: Debug {
/// The type of nodes in the graph. This should be cheap to clone.
type Node: Clone + Debug + Hash + Eq + 'static;
/// An error type.
type Error: Debug + std::error::Error + 'static;
/// Get every node `X` in the graph such that `X == node` or there exists a
/// child of `X` that is an ancestor of `node`.
fn ancestors(&self, node: Self::Node) -> Result<HashSet<Self::Node>, Self::Error>;
/// Get the union of `ancestors(node)` for every node in `nodes`.
#[instrument]
fn ancestors_all(
&self,
nodes: HashSet<Self::Node>,
) -> Result<HashSet<Self::Node>, Self::Error> {
let mut ancestors = HashSet::new();
for node in nodes {
ancestors.extend(self.ancestors(node)?);
}
Ok(ancestors)
}
/// Filter `nodes` to only include nodes that are not ancestors of any other
/// node in `nodes`.
fn ancestor_heads(
&self,
nodes: HashSet<Self::Node>,
) -> Result<HashSet<Self::Node>, Self::Error> {
let node_to_ancestors: HashMap<Self::Node, HashSet<Self::Node>> = nodes
.iter()
.map(|node| Ok((node.clone(), self.ancestors(node.clone())?)))
.collect::<Result<_, _>>()?;
let heads: HashSet<Self::Node> = nodes
.into_iter()
.filter(|node| {
node_to_ancestors
.iter()
.filter_map(|(other_node, ancestors)| {
if node == other_node {
None
} else {
Some(ancestors)
}
})
.all(|ancestors| !ancestors.contains(node))
})
.collect();
Ok(heads)
}
/// Get every node `X` in the graph such that `X == node` or there exists a
/// parent of `X` that is a descendant of `node`.
fn descendants(&self, node: Self::Node) -> Result<HashSet<Self::Node>, Self::Error>;
/// Filter `nodes` to only include nodes that are not descendants of any
/// other node in `nodes`.
fn descendant_roots(
&self,
nodes: HashSet<Self::Node>,
) -> Result<HashSet<Self::Node>, Self::Error> {
let node_to_descendants: HashMap<Self::Node, HashSet<Self::Node>> = nodes
.iter()
.map(|node| Ok((node.clone(), self.descendants(node.clone())?)))
.collect::<Result<_, _>>()?;
let roots: HashSet<Self::Node> = nodes
.into_iter()
.filter(|node| {
node_to_descendants
.iter()
.filter_map(|(other_node, descendants)| {
if node == other_node {
None
} else {
Some(descendants)
}
})
.all(|descendants| !descendants.contains(node))
})
.collect();
Ok(roots)
}
/// Get the union of `descendants(node)` for every node in `nodes`.
#[instrument]
fn descendants_all(
&self,
nodes: HashSet<Self::Node>,
) -> Result<HashSet<Self::Node>, Self::Error> {
let mut descendants = HashSet::new();
for node in nodes {
descendants.extend(self.descendants(node)?);
}
Ok(descendants)
}
}
impl<T: BasicSourceControlGraph> search::Graph for T {
type Node = <Self as BasicSourceControlGraph>::Node;
type Error = <Self as BasicSourceControlGraph>::Error;
fn is_ancestor(
&self,
ancestor: Self::Node,
descendant: Self::Node,
) -> Result<bool, Self::Error> {
let ancestors = self.ancestors(descendant)?;
Ok(ancestors.contains(&ancestor))
}
fn simplify_success_bounds(
&self,
nodes: HashSet<Self::Node>,
) -> Result<HashSet<Self::Node>, Self::Error> {
self.ancestor_heads(nodes)
}
fn simplify_failure_bounds(
&self,
nodes: HashSet<Self::Node>,
) -> Result<HashSet<Self::Node>, Self::Error> {
self.descendant_roots(nodes)
}
}
/// The possible strategies for searching the graph.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum BasicStrategyKind {
/// Search the nodes in the order that they were provided.
Linear,
/// Search the nodes in the reverse order that they were provided.
LinearReverse,
/// Conduct a binary search on the nodes by partitioning the nodes into two
/// groups of approximately equal size.
///
/// TODO: Partitioning into groups of approximately equal size isn't
/// actually optimal for the DAG case. Really, we want to maximize the
/// information that we gain from each test. The `git bisect` algorithm at
/// https://git-scm.com/docs/git-bisect-lk2009#_bisection_algorithm_discussed
/// discusses a metric to find the best partition for the subgraph which
/// remains to be tested.
///
/// See also `git-bisect`'s skip algorithm:
/// https://git-scm.com/docs/git-bisect-lk2009#_skip_algorithm. This does
/// *not* use the same skip algorithm, and instead uses a deterministic
/// approach. In order to solve the following problem:
///
/// > sometimes the best bisection points all happened to be in an area
/// where all the commits are untestable. And in this case the user was
/// asked to test many untestable commits, which could be very inefficient.
///
/// We instead consider the hypothetical case that the node is a success,
/// and yield further nodes as if it were a success, and then interleave
/// those nodes with the hypothetical failure case.
///
/// Resources:
///
/// - https://git-scm.com/docs/git-bisect-lk2009#_bisection_algorithm_discussed
/// - https://byorgey.wordpress.com/2023/01/01/competitive-programming-in-haskell-better-binary-search/
/// - https://julesjacobs.com/notes/binarysearch/binarysearch.pdf
Binary,
}
/// A set of basic search strategies defined by `BasicStrategyKind`.
#[derive(Clone, Debug)]
pub struct BasicStrategy {
strategy: BasicStrategyKind,
}
impl BasicStrategy {
/// Constructor.
pub fn new(strategy: BasicStrategyKind) -> Self {
Self { strategy }
}
}
impl<G: BasicSourceControlGraph> search::Strategy<G> for BasicStrategy {
type Error = G::Error;
fn midpoint(
&self,
graph: &G,
bounds: &search::Bounds<G::Node>,
statuses: &IndexMap<G::Node, search::Status>,
) -> Result<Option<G::Node>, G::Error> {
let search::Bounds {
success: success_bounds,
failure: failure_bounds,
} = bounds;
let mut nodes_to_search = {
let implied_success_nodes = graph.ancestors_all(success_bounds.clone())?;
let implied_failure_nodes = graph.descendants_all(failure_bounds.clone())?;
statuses
.iter()
.filter_map(|(node, status)| match status {
search::Status::Untested => Some(node.clone()),
search::Status::Success
| search::Status::Failure
| search::Status::Indeterminate => None,
})
.filter(|node| {
!implied_success_nodes.contains(node) && !implied_failure_nodes.contains(node)
})
.collect::<Vec<_>>()
};
let next_to_search: Option<G::Node> = match self.strategy {
BasicStrategyKind::Linear => nodes_to_search.into_iter().next(),
BasicStrategyKind::LinearReverse => nodes_to_search.into_iter().next_back(),
BasicStrategyKind::Binary => {
let middle_index = nodes_to_search.len() / 2;
if middle_index < nodes_to_search.len() {
Some(nodes_to_search.swap_remove(middle_index))
} else {
None
}
}
};
Ok(next_to_search)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::search::Bounds;
use crate::search::EagerSolution;
use crate::search::Search;
use crate::search::Status;
use crate::testing::arb_strategy;
use crate::testing::arb_test_graph_and_nodes;
use crate::testing::TestGraph;
use crate::testing::UsizeGraph;
use itertools::Itertools;
use maplit::hashmap;
use maplit::hashset;
#[test]
fn test_search_stick() {
let graph = UsizeGraph { max: 7 };
let nodes = 0..graph.max;
let linear_strategy = BasicStrategy {
strategy: BasicStrategyKind::Linear,
};
let linear_reverse_strategy = BasicStrategy {
strategy: BasicStrategyKind::LinearReverse,
};
let binary_strategy = BasicStrategy {
strategy: BasicStrategyKind::Binary,
};
let mut search = Search::new(graph.clone(), nodes.clone());
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Default::default(),
next_to_search: vec![0, 1, 2, 3, 4, 5, 6],
}
);
assert_eq!(
search
.search(&linear_reverse_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Default::default(),
next_to_search: vec![6, 5, 4, 3, 2, 1, 0],
}
);
assert_eq!(
search
.search(&binary_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Default::default(),
// Breadth-first search:
// 0 1 2 3 4 5 6
// ^
// ^
// ^
// ^
// ^
// ^
// ^
next_to_search: vec![3, 1, 5, 0, 2, 4, 6],
}
);
search.notify(2, Status::Success).unwrap();
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {2},
failure: hashset! {},
},
next_to_search: vec![3, 4, 5, 6],
}
);
assert_eq!(
search
.search(&binary_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {2},
failure: hashset! {},
},
next_to_search: vec![5, 4, 6, 3],
}
);
search.notify(5, Status::Failure).unwrap();
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {2},
failure: hashset! {5},
},
next_to_search: vec![3, 4],
}
);
assert_eq!(
search
.search(&binary_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {2},
failure: hashset! {5},
},
next_to_search: vec![4, 3],
}
);
search.notify(3, Status::Indeterminate).unwrap();
assert_eq!(
search
.search(&binary_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {2},
failure: hashset! {5},
},
next_to_search: vec![4],
}
);
}
#[test]
fn test_search_inconsistent_notify() {
let graph = UsizeGraph { max: 7 };
let nodes = 0..graph.max;
let mut search = Search::new(graph, nodes);
search.notify(4, Status::Success).unwrap();
insta::assert_debug_snapshot!(search.notify(3, Status::Failure), @r###"
Err(
InconsistentStateTransition {
ancestor_node: 3,
ancestor_status: Failure,
descendant_node: 4,
descendant_status: Success,
},
)
"###);
insta::assert_debug_snapshot!(search.notify(4, Status::Indeterminate), @r###"
Err(
IllegalStateTransition {
node: 4,
from: Success,
to: Indeterminate,
},
)
"###);
search.notify(5, Status::Failure).unwrap();
insta::assert_debug_snapshot!(search.notify(6, Status::Success), @r###"
Err(
InconsistentStateTransition {
ancestor_node: 5,
ancestor_status: Failure,
descendant_node: 6,
descendant_status: Success,
},
)
"###);
}
#[test]
fn test_search_dag() {
let graph = TestGraph {
// a -> b -> e -> f -> g
// c -> d -> -> h
nodes: hashmap! {
'a' => hashset! {'b'},
'b' => hashset! {'e'},
'c' => hashset! {'d'},
'd' => hashset! {'e'},
'e' => hashset! {'f', 'h'},
'f' => hashset! {'g'},
'g' => hashset! {},
'h' => hashset! {},
},
};
let linear_strategy = BasicStrategy {
strategy: BasicStrategyKind::Linear,
};
assert_eq!(graph.descendants('e'), Ok(hashset! {'e', 'f', 'g', 'h'}));
assert_eq!(graph.ancestors('e'), Ok(hashset! {'a', 'b', 'c', 'd', 'e'}));
let mut search = Search::new(graph, 'a'..='h');
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Default::default(),
// Breadth-first search: we start from the roots of the graph in
// parallel and proceed to the heads of the graph.
next_to_search: vec!['a', 'c', 'b', 'd', 'e', 'f', 'h', 'g'],
}
);
search.notify('b', Status::Success).unwrap();
search.notify('g', Status::Failure).unwrap();
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {'b'},
failure: hashset! {'g'},
},
next_to_search: vec!['c', 'd', 'e', 'f', 'h'],
}
);
search.notify('e', Status::Success).unwrap();
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {'e'},
failure: hashset! {'g'},
},
next_to_search: vec!['f', 'h'],
}
);
search.notify('f', Status::Success).unwrap();
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {'f'},
failure: hashset! {'g'},
},
next_to_search: vec!['h'],
}
);
search.notify('h', Status::Success).unwrap();
assert_eq!(
search
.search(&linear_strategy)
.unwrap()
.into_eager()
.unwrap(),
EagerSolution {
bounds: Bounds {
success: hashset! {'f', 'h'},
failure: hashset! {'g'},
},
next_to_search: vec![],
}
);
}
proptest::proptest! {
#[test]
fn test_search_dag_proptest(strategy in arb_strategy(), (graph, failure_nodes) in arb_test_graph_and_nodes()) {
let nodes = graph.nodes.keys().sorted().copied().collect::<Vec<_>>();
let strategy = BasicStrategy {
strategy,
};
let mut search = Search::new(graph.clone(), nodes);
let failure_nodes = graph.descendants_all(failure_nodes.into_iter().collect()).unwrap();
let solution = loop {
let solution = search.search(&strategy).unwrap().into_eager().unwrap();
let Bounds { success, failure } = &solution.bounds;
for success_node in success {
assert!(!failure_nodes.contains(success_node))
}
for failure_node in failure {
assert!(failure_nodes.contains(failure_node));
}
match solution.next_to_search.first() {
Some(node) => {
search.notify(*node, if failure_nodes.contains(node) {
Status::Failure
} else {
Status::Success
}).unwrap();
}
None => break solution,
}
};
let nodes = graph.nodes.keys().copied().collect::<HashSet<_>>();
assert!(solution.bounds.success.is_subset(&nodes));
assert!(solution.bounds.failure.is_subset(&nodes));
assert!(solution.bounds.success.is_disjoint(&solution.bounds.failure));
let all_success_nodes = graph.ancestors_all(solution.bounds.success.clone()).unwrap();
let all_failure_nodes = graph.descendants_all(solution.bounds.failure).unwrap();
assert!(all_success_nodes.is_disjoint(&all_failure_nodes));
assert!(
all_success_nodes.union(&all_failure_nodes).copied().collect::<HashSet<_>>() == nodes,
"all_success_nodes: {all_success_nodes:?}, all_failure_nodes: {all_failure_nodes:?}, nodes: {nodes:?}",
);
}
}
}