1#![allow(dead_code)]
13use crate::error::Result;
18#[cfg(test)]
19use crate::streaming::FrameMetadata;
20use crate::streaming::{Frame, ProcessingStage};
21use scirs2_core::ndarray::ArrayStatCompat;
22use scirs2_core::ndarray::{Array1, Array2};
23use scirs2_core::random::prelude::*;
24use scirs2_core::random::rand_prelude::IndexedMutRandom;
25use scirs2_core::random::Rng;
26use statrs::statistics::Statistics;
27use std::collections::HashMap;
28use std::sync::{Arc, Mutex};
29use std::time::Instant;
30
31#[derive(Debug, Clone)]
33pub struct QuantumAmplitude {
34 pub real: f64,
36 pub imaginary: f64,
38}
39
40impl QuantumAmplitude {
41 pub fn new(real: f64, imaginary: f64) -> Self {
43 Self { real, imaginary }
44 }
45
46 pub fn probability(&self) -> f64 {
48 self.real * self.real + self.imaginary * self.imaginary
49 }
50
51 pub fn normalize(&mut self) {
53 let magnitude = (self.real * self.real + self.imaginary * self.imaginary).sqrt();
54 if magnitude > 0.0 {
55 self.real /= magnitude;
56 self.imaginary /= magnitude;
57 }
58 }
59}
60
61#[derive(Debug, Clone)]
63pub struct QuantumProcessingState {
64 pub stage_amplitudes: HashMap<String, QuantumAmplitude>,
66 pub global_phase: f64,
68 pub entanglement_matrix: Array2<f64>,
70 pub energy: f64,
72}
73
74impl QuantumProcessingState {
75 pub fn new(_stagenames: &[String]) -> Self {
77 let mut stage_amplitudes = HashMap::new();
78
79 for stagename in _stagenames {
81 let amplitude = QuantumAmplitude::new(1.0 / (_stagenames.len() as f64).sqrt(), 0.0);
82 stage_amplitudes.insert(stagename.clone(), amplitude);
83 }
84
85 let n_stages = _stagenames.len();
86 let entanglement_matrix = Array2::zeros((n_stages, n_stages));
87
88 Self {
89 stage_amplitudes,
90 global_phase: 0.0,
91 entanglement_matrix,
92 energy: 0.0,
93 }
94 }
95
96 pub fn evolve(&mut self, timestep: f64, hamiltonian: &QuantumHamiltonian) {
98 let original_amplitudes: HashMap<String, QuantumAmplitude> = self.stage_amplitudes.clone();
103
104 let stage_indices: HashMap<String, usize> = self
106 .stage_amplitudes
107 .keys()
108 .enumerate()
109 .map(|(idx, name)| (name.clone(), idx))
110 .collect();
111
112 for (stagename, amplitude) in &mut self.stage_amplitudes {
113 if let Some(&energy) = hamiltonian.stage_energies.get(stagename) {
114 let phase_change = -energy * timestep;
115
116 let cos_phase = phase_change.cos();
118 let sin_phase = phase_change.sin();
119
120 let mut entanglement_real = 0.0;
122 let mut entanglement_imaginary = 0.0;
123
124 for (other_stage, other_amplitude) in &original_amplitudes {
125 if other_stage != stagename {
126 let stage_idx = stage_indices.get(stagename);
128 let other_idx = stage_indices.get(other_stage);
129
130 if let (Some(&i), Some(&j)) = (stage_idx, other_idx) {
131 if i < self.entanglement_matrix.nrows()
132 && j < self.entanglement_matrix.ncols()
133 {
134 let entanglementstrength = self.entanglement_matrix[[i, j]];
135
136 entanglement_real +=
138 entanglementstrength * other_amplitude.real * timestep;
139 entanglement_imaginary +=
140 entanglementstrength * other_amplitude.imaginary * timestep;
141 }
142 }
143 }
144 }
145
146 let new_real = amplitude.real * cos_phase - amplitude.imaginary * sin_phase
148 + entanglement_real * 0.1;
149 let new_imaginary = amplitude.real * sin_phase
150 + amplitude.imaginary * cos_phase
151 + entanglement_imaginary * 0.1;
152
153 amplitude.real = new_real;
154 amplitude.imaginary = new_imaginary;
155
156 let decoherence_factor = (-timestep * 0.01).exp(); amplitude.real *= decoherence_factor;
159 amplitude.imaginary *= decoherence_factor;
160 }
161 }
162
163 self.global_phase += timestep;
164
165 self.update_entanglement_matrix();
167 }
168
169 fn get_stage_index(&self, stagename: &str) -> Option<usize> {
171 self.stage_amplitudes
172 .keys()
173 .enumerate()
174 .find(|(_, name)| name.as_str() == stagename)
175 .map(|(index_, _)| index_)
176 }
177
178 fn update_entanglement_matrix(&mut self) {
180 let _stagenames: Vec<String> = self.stage_amplitudes.keys().cloned().collect();
181 let n_stages = _stagenames.len();
182
183 for i in 0..n_stages {
184 for j in 0..n_stages {
185 if i != j
186 && i < self.entanglement_matrix.nrows()
187 && j < self.entanglement_matrix.ncols()
188 {
189 let stage_i = &_stagenames[i];
190 let stage_j = &_stagenames[j];
191
192 if let (Some(amp_i), Some(amp_j)) = (
193 self.stage_amplitudes.get(stage_i),
194 self.stage_amplitudes.get(stage_j),
195 ) {
196 let correlation =
198 amp_i.real * amp_j.real + amp_i.imaginary * amp_j.imaginary;
199
200 let current_entanglement = self.entanglement_matrix[[i, j]];
202 let new_entanglement = 0.9 * current_entanglement + 0.1 * correlation.abs();
203 self.entanglement_matrix[[i, j]] = new_entanglement.min(1.0);
204 }
205 }
206 }
207 }
208 }
209
210 pub fn apply_quantum_error_correction(&mut self) {
212 let total_probability = self.calculate_total_probability();
214
215 if total_probability.abs() < 1e-6 {
216 let n_stages = self.stage_amplitudes.len();
218 let amplitude_value = 1.0 / (n_stages as f64).sqrt();
219
220 for amplitude in self.stage_amplitudes.values_mut() {
221 amplitude.real = amplitude_value;
222 amplitude.imaginary = 0.0;
223 }
224 } else if (total_probability - 1.0).abs() > 0.01 {
225 let normalization_factor = 1.0 / total_probability.sqrt();
227 for amplitude in self.stage_amplitudes.values_mut() {
228 amplitude.real *= normalization_factor;
229 amplitude.imaginary *= normalization_factor;
230 }
231 }
232 }
233
234 fn calculate_total_probability(&self) -> f64 {
236 self.stage_amplitudes
237 .values()
238 .map(|amp| amp.probability())
239 .sum()
240 }
241
242 pub fn calculate_quantum_advantage(&self) -> f64 {
244 let coherence = self.calculate_coherence_measure();
245 let entanglement = self.calculate_average_entanglement();
246
247 1.0 + coherence * 0.5 + entanglement * 0.3
248 }
249
250 fn calculate_coherence_measure(&self) -> f64 {
252 let mut coherence = 0.0;
253
254 for amplitude in self.stage_amplitudes.values() {
255 let magnitude = (amplitude.real.powi(2) + amplitude.imaginary.powi(2)).sqrt();
257 coherence += magnitude;
258 }
259
260 coherence / self.stage_amplitudes.len() as f64
261 }
262
263 fn calculate_average_entanglement(&self) -> f64 {
265 let mut total_entanglement = 0.0;
266 let mut count = 0;
267
268 for i in 0..self.entanglement_matrix.nrows() {
269 for j in 0..self.entanglement_matrix.ncols() {
270 if i != j {
271 total_entanglement += self.entanglement_matrix[[i, j]];
272 count += 1;
273 }
274 }
275 }
276
277 if count > 0 {
278 total_entanglement / count as f64
279 } else {
280 0.0
281 }
282 }
283
284 pub fn measure(&self) -> ProcessingDecision {
286 let mut max_probability = 0.0;
287 let mut optimal_stage = String::new();
288 let mut stage_priorities = HashMap::new();
289
290 for (stagename, amplitude) in &self.stage_amplitudes {
291 let probability = amplitude.probability();
292 stage_priorities.insert(stagename.clone(), probability);
293
294 if probability > max_probability {
295 max_probability = probability;
296 optimal_stage = stagename.clone();
297 }
298 }
299
300 ProcessingDecision {
301 optimal_stage,
302 stage_priorities,
303 confidence: max_probability,
304 }
305 }
306}
307
308#[derive(Debug, Clone)]
310pub struct QuantumHamiltonian {
311 pub stage_energies: HashMap<String, f64>,
313 pub coupling_matrix: Array2<f64>,
315 pub external_fields: HashMap<String, f64>,
317}
318
319impl QuantumHamiltonian {
320 pub fn new(_stagenames: &[String]) -> Self {
322 let mut stage_energies = HashMap::new();
323 let mut external_fields = HashMap::new();
324
325 let mut rng = scirs2_core::random::rng();
327 for stagename in _stagenames {
328 stage_energies.insert(stagename.clone(), rng.random_range(0.1..2.0));
329 external_fields.insert(stagename.clone(), 0.0);
330 }
331
332 let n_stages = _stagenames.len();
333 let coupling_matrix = Array2::zeros((n_stages, n_stages));
334
335 Self {
336 stage_energies,
337 coupling_matrix,
338 external_fields,
339 }
340 }
341
342 pub fn update_energies(&mut self, performancemetrics: &HashMap<String, f64>) {
344 for (stagename, &performance) in performancemetrics {
345 if let Some(energy) = self.stage_energies.get_mut(stagename) {
346 *energy = 2.0 - performance.min(2.0);
348 }
349 }
350 }
351}
352
353#[derive(Debug, Clone)]
355pub struct ProcessingDecision {
356 pub optimal_stage: String,
358 pub stage_priorities: HashMap<String, f64>,
360 pub confidence: f64,
362}
363
364#[derive(Debug)]
366pub struct QuantumStreamProcessor {
367 quantum_state: QuantumProcessingState,
369 hamiltonian: QuantumHamiltonian,
371 _stagenames: Vec<String>,
373 performance_history: HashMap<String, Vec<f64>>,
375 timestep: f64,
377 last_measurement: Instant,
379}
380
381impl QuantumStreamProcessor {
382 pub fn new(_stagenames: Vec<String>) -> Self {
384 let quantum_state = QuantumProcessingState::new(&_stagenames);
385 let hamiltonian = QuantumHamiltonian::new(&_stagenames);
386 let performance_history = HashMap::new();
387
388 Self {
389 quantum_state,
390 hamiltonian,
391 _stagenames,
392 performance_history,
393 timestep: 0.01,
394 last_measurement: Instant::now(),
395 }
396 }
397
398 pub fn process_quantum_frame(&mut self, frame: Frame) -> Result<(Frame, ProcessingDecision)> {
400 let elapsed = self.last_measurement.elapsed().as_secs_f64();
402 self.quantum_state
403 .evolve(elapsed * self.timestep, &self.hamiltonian);
404
405 let decision = self.quantum_state.measure();
407
408 let enhanced_frame = self.apply_quantum_interference(&frame)?;
410
411 self.last_measurement = Instant::now();
412 Ok((enhanced_frame, decision))
413 }
414
415 fn apply_quantum_interference(&self, frame: &Frame) -> Result<Frame> {
417 let (height, width) = frame.data.dim();
418 let mut enhanced_data = frame.data.clone();
419
420 for y in 1..height - 1 {
422 for x in 1..width - 1 {
423 let neighbors = [
425 frame.data[[y - 1, x - 1]],
426 frame.data[[y - 1, x]],
427 frame.data[[y - 1, x + 1]],
428 frame.data[[y, x - 1]],
429 frame.data[[y, x]],
430 frame.data[[y, x + 1]],
431 frame.data[[y + 1, x - 1]],
432 frame.data[[y + 1, x]],
433 frame.data[[y + 1, x + 1]],
434 ];
435
436 let interference_weights = [
438 0.0625, 0.125, 0.0625, 0.125, 0.25, 0.125, 0.0625, 0.125, 0.0625,
439 ];
440
441 let mut interference_value = 0.0;
442 for (pixel, weight) in neighbors.iter().zip(interference_weights.iter()) {
443 let phase = (x as f64 * 0.1 + y as f64 * 0.1) * self.quantum_state.global_phase;
445 let quantum_factor = (phase.cos() + 1.0) * 0.5; interference_value += pixel * weight * quantum_factor as f32;
447 }
448
449 enhanced_data[[y, x]] = interference_value;
450 }
451 }
452
453 Ok(Frame {
454 data: enhanced_data,
455 timestamp: frame.timestamp,
456 index: frame.index,
457 metadata: frame.metadata.clone(),
458 })
459 }
460
461 pub fn update_performance(&mut self, stagename: &str, performance: f64) {
463 self.performance_history
464 .entry(stagename.to_string())
465 .or_default()
466 .push(performance);
467
468 if let Some(history) = self.performance_history.get_mut(stagename) {
470 if history.len() > 100 {
471 history.remove(0);
472 }
473 }
474
475 let mut avg_performance = HashMap::new();
477 for (stage, history) in &self.performance_history {
478 if !history.is_empty() {
479 let avg = history.iter().sum::<f64>() / history.len() as f64;
480 avg_performance.insert(stage.clone(), avg);
481 }
482 }
483
484 self.hamiltonian.update_energies(&avg_performance);
485 }
486
487 pub async fn initialize_quantum_fusion(&mut self) -> Result<()> {
489 for amplitude in self.quantum_state.stage_amplitudes.values_mut() {
491 amplitude.normalize();
492 }
493
494 self.hamiltonian.update_energies(&HashMap::new());
496
497 self.performance_history.clear();
499
500 Ok(())
501 }
502}
503
504pub struct QuantumAnnealingStage {
506 temperature: f64,
508 cooling_rate: f64,
510 parameters: HashMap<String, f64>,
512 best_parameters: HashMap<String, f64>,
514 best_cost: f64,
516 step_counter: usize,
518}
519
520impl QuantumAnnealingStage {
521 pub fn new(_initialparameters: HashMap<String, f64>) -> Self {
523 let best_parameters = _initialparameters.clone();
524
525 Self {
526 temperature: 100.0,
527 cooling_rate: 0.99,
528 parameters: _initialparameters,
529 best_parameters,
530 best_cost: f64::INFINITY,
531 step_counter: 0,
532 }
533 }
534
535 pub fn anneal_step(&mut self, costfunction: impl Fn(&HashMap<String, f64>) -> f64) -> f64 {
537 let current_cost = costfunction(&self.parameters);
538
539 let mut neighbor_params = self.parameters.clone();
541 let mut rng = scirs2_core::random::rng();
542
543 let mut param_entries: Vec<_> = neighbor_params.iter_mut().collect();
544 if let Some((_param_name, param_value)) = param_entries.choose_mut(&mut rng) {
545 let perturbation = rng.random_range(-0.1..0.1) * self.temperature / 100.0;
546 **param_value += perturbation;
547 **param_value = param_value.clamp(0.0, 1.0); }
549
550 let neighbor_cost = costfunction(&neighbor_params);
551 let delta_cost = neighbor_cost - current_cost;
552
553 let acceptance_probability = if delta_cost < 0.0 {
555 1.0 } else {
557 (-delta_cost / self.temperature).exp()
558 };
559
560 if rng.random::<f64>() < acceptance_probability {
561 self.parameters = neighbor_params;
562
563 if neighbor_cost < self.best_cost {
564 self.best_cost = neighbor_cost;
565 self.best_parameters = self.parameters.clone();
566 }
567 }
568
569 self.temperature *= self.cooling_rate;
571 self.step_counter += 1;
572
573 current_cost
574 }
575
576 pub fn get_best_parameters(&self) -> &HashMap<String, f64> {
578 &self.best_parameters
579 }
580}
581
582impl ProcessingStage for QuantumAnnealingStage {
583 fn process(&mut self, frame: Frame) -> Result<Frame> {
584 let cost_function = |params: &HashMap<String, f64>| -> f64 {
586 let blur_sigma = params.get("blur_sigma").unwrap_or(&1.0);
587 let edge_threshold = params.get("edge_threshold").unwrap_or(&0.1);
588
589 (blur_sigma - 0.5).abs() + (edge_threshold - 0.2).abs()
592 };
593
594 let _current_cost = self.anneal_step(cost_function);
596
597 let best_params = self.get_best_parameters();
599 let blur_sigma = *best_params.get("blur_sigma").unwrap_or(&1.0);
600
601 let processed_data = if blur_sigma > 0.1 {
603 crate::simd_ops::simd_gaussian_blur(&frame.data.view(), blur_sigma as f32)?
604 } else {
605 frame.data.clone()
606 };
607
608 Ok(Frame {
609 data: processed_data,
610 timestamp: frame.timestamp,
611 index: frame.index,
612 metadata: frame.metadata.clone(),
613 })
614 }
615
616 fn name(&self) -> &str {
617 "QuantumAnnealing"
618 }
619}
620
621pub struct QuantumEntanglementStage {
623 correlation_matrix: Array2<f64>,
625 entanglementstrength: f64,
627 feature_history: Vec<Array1<f64>>,
629 max_history: usize,
631}
632
633impl QuantumEntanglementStage {
634 pub fn new(_feature_dimension: usize, entanglementstrength: f64) -> Self {
636 Self {
637 correlation_matrix: Array2::eye(_feature_dimension),
638 entanglementstrength,
639 feature_history: Vec::new(),
640 max_history: 50,
641 }
642 }
643
644 fn extract_quantum_features(&self, frame: &Frame) -> Array1<f64> {
646 let (height, width) = frame.data.dim();
647 let mut features = Vec::new();
648
649 let mean = frame.data.mean_or(0.0) as f64;
651 let variance = {
652 let variance_f32 = frame
653 .data
654 .iter()
655 .map(|&x| (x - mean as f32).powi(2))
656 .sum::<f32>()
657 / frame.data.len() as f32;
658 variance_f32 as f64
659 };
660 features.push(mean);
661 features.push(variance);
662
663 if let Ok((_grad_x, _grad_y, magnitude)) =
665 crate::simd_ops::simd_sobel_gradients(&frame.data.view())
666 {
667 let grad_mean = magnitude.mean_or(0.0) as f64;
668 let grad_variance = {
669 let mag_mean = magnitude.mean_or(0.0);
670 let variance_f32 = magnitude
671 .iter()
672 .map(|&x| (x - mag_mean).powi(2))
673 .sum::<f32>()
674 / magnitude.len() as f32;
675 variance_f32 as f64
676 };
677 features.push(grad_mean);
678 features.push(grad_variance);
679 } else {
680 features.push(0.0);
681 features.push(0.0);
682 }
683
684 let mut freq_energy = 0.0;
686 for y in 0..height.min(8) {
687 for x in 0..width.min(8) {
688 let spatial_freq = ((y as f64).powf(2.0) + (x as f64).powf(2.0)).sqrt();
689 freq_energy += frame.data[[y, x]] as f64 * spatial_freq;
690 }
691 }
692 features.push(freq_energy / (64.0 * 255.0)); let coherence = self.calculate_quantum_coherence(frame);
696 features.push(coherence);
697
698 Array1::from_vec(features)
699 }
700
701 fn calculate_quantum_coherence(&self, frame: &Frame) -> f64 {
703 let (height, width) = frame.data.dim();
704 let mut coherence_sum = 0.0;
705 let mut count = 0;
706
707 for y in (1..height - 1).step_by(4) {
709 for x in (1..width - 1).step_by(4) {
710 let center = frame.data[[y, x]] as f64;
712 let neighbors = [
713 frame.data[[y - 1, x]] as f64,
714 frame.data[[y + 1, x]] as f64,
715 frame.data[[y, x - 1]] as f64,
716 frame.data[[y, x + 1]] as f64,
717 ];
718
719 let phase_variance =
720 neighbors.iter().map(|&n| (n - center).abs()).sum::<f64>() / 4.0;
721
722 coherence_sum += 1.0 / (1.0 + phase_variance);
723 count += 1;
724 }
725 }
726
727 if count > 0 {
728 coherence_sum / count as f64
729 } else {
730 0.0
731 }
732 }
733
734 fn update_correlations(&mut self, features: &Array1<f64>) {
736 self.feature_history.push(features.clone());
737
738 if self.feature_history.len() > self.max_history {
740 self.feature_history.remove(0);
741 }
742
743 if self.feature_history.len() >= 10 {
745 let n_features = features.len();
746 let mut new_correlation = Array2::zeros((n_features, n_features));
747
748 for i in 0..n_features {
750 for j in 0..n_features {
751 let mut correlation = 0.0;
752
753 for k in 0..self.feature_history.len() {
754 let feature_i = self.feature_history[k][i];
755 let feature_j = self.feature_history[k][j];
756
757 let entanglement_factor =
759 (self.entanglementstrength * (feature_i * feature_j).abs()).exp();
760
761 correlation += feature_i * feature_j * entanglement_factor;
762 }
763
764 correlation /= self.feature_history.len() as f64;
765 new_correlation[[i, j]] = correlation;
766 }
767 }
768
769 let alpha = 0.1;
771 self.correlation_matrix =
772 alpha * new_correlation + (1.0 - alpha) * &self.correlation_matrix;
773 }
774 }
775
776 fn apply_entanglement_enhancement(
778 &self,
779 frame: &Frame,
780 features: &Array1<f64>,
781 ) -> Result<Frame> {
782 let (height, width) = frame.data.dim();
783 let mut enhanced_data = frame.data.clone();
784
785 let enhanced_features = self.correlation_matrix.dot(features);
787
788 for y in 0..height {
790 for x in 0..width {
791 let pixel_value = frame.data[[y, x]] as f64;
792
793 let spatial_weight = ((y as f64 / height as f64) + (x as f64 / width as f64)) * 0.5;
795 let feature_weight = enhanced_features
796 .iter()
797 .enumerate()
798 .map(|(i, &f)| f * (i as f64 + 1.0))
799 .sum::<f64>()
800 / enhanced_features.len() as f64;
801
802 let enhancement = 1.0 + self.entanglementstrength * spatial_weight * feature_weight;
803 let enhanced_pixel = (pixel_value * enhancement).clamp(0.0, 1.0);
804
805 enhanced_data[[y, x]] = enhanced_pixel as f32;
806 }
807 }
808
809 Ok(Frame {
810 data: enhanced_data,
811 timestamp: frame.timestamp,
812 index: frame.index,
813 metadata: frame.metadata.clone(),
814 })
815 }
816}
817
818impl ProcessingStage for QuantumEntanglementStage {
819 fn process(&mut self, frame: Frame) -> Result<Frame> {
820 let features = self.extract_quantum_features(&frame);
822
823 self.update_correlations(&features);
825
826 self.apply_entanglement_enhancement(&frame, &features)
828 }
829
830 fn name(&self) -> &str {
831 "QuantumEntanglement"
832 }
833}
834
835pub struct QuantumSuperpositionStage {
837 processing_variants: Vec<ProcessingVariant>,
839 superposition_weights: Vec<f64>,
841 interference_pattern: Array1<f64>,
843}
844
845struct ProcessingVariant {
847 name: String,
848 sigma: f32,
849 threshold: f32,
850 enhancement_factor: f32,
851}
852
853impl QuantumSuperpositionStage {
854 pub fn new(_numvariants: usize) -> Self {
856 let mut processing_variants = Vec::new();
857 let mut superposition_weights = Vec::new();
858 let mut rng = scirs2_core::random::rng();
859
860 for i in 0.._numvariants {
862 let variant = ProcessingVariant {
863 name: format!("Variant_{i}"),
864 sigma: rng.random_range(0.5..2.0),
865 threshold: rng.random_range(0.05..0.3),
866 enhancement_factor: rng.random_range(0.8..1.2),
867 };
868
869 processing_variants.push(variant);
870 superposition_weights.push(1.0 / (_numvariants as f64).sqrt());
871 }
872
873 let interference_pattern = Array1::from_shape_fn(_numvariants, |i| {
875 (i as f64 * std::f64::consts::PI / _numvariants as f64).cos()
876 });
877
878 Self {
879 processing_variants,
880 superposition_weights,
881 interference_pattern,
882 }
883 }
884
885 fn process_superposition(&self, frame: &Frame) -> Result<Frame> {
887 let (height, width) = frame.data.dim();
888 let mut superposed_result = Array2::zeros((height, width));
889
890 for (i, variant) in self.processing_variants.iter().enumerate() {
892 let weight = self.superposition_weights[i];
893 let interference = self.interference_pattern[i];
894
895 let processed = if variant.sigma > 0.1 {
897 crate::simd_ops::simd_gaussian_blur(&frame.data.view(), variant.sigma)?
898 } else {
899 frame.data.clone()
900 };
901
902 for y in 0..height {
904 for x in 0..width {
905 let quantum_contribution = processed[[y, x]] as f64
906 * weight
907 * interference
908 * variant.enhancement_factor as f64;
909 superposed_result[[y, x]] += quantum_contribution;
910 }
911 }
912 }
913
914 let max_val = superposed_result
916 .iter()
917 .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
918 let min_val = superposed_result
919 .iter()
920 .fold(f64::INFINITY, |a, &b| a.min(b));
921
922 if max_val != min_val {
923 superposed_result.mapv_inplace(|x| (x - min_val) / (max_val - min_val));
924 }
925
926 let final_result = superposed_result.mapv(|x| x as f32);
927
928 Ok(Frame {
929 data: final_result,
930 timestamp: frame.timestamp,
931 index: frame.index,
932 metadata: frame.metadata.clone(),
933 })
934 }
935
936 pub fn update_weights(&mut self, performancemetrics: &[f64]) {
938 if performancemetrics.len() == self.superposition_weights.len() {
939 let total_performance: f64 = performancemetrics.iter().sum();
941
942 if total_performance > 0.0 {
943 for (i, &performance) in performancemetrics.iter().enumerate() {
944 self.superposition_weights[i] = (performance / total_performance).sqrt();
946 }
947
948 let weight_sum: f64 = self.superposition_weights.iter().map(|w| w * w).sum();
950 let norm_factor = weight_sum.sqrt();
951
952 if norm_factor > 0.0 {
953 for weight in &mut self.superposition_weights {
954 *weight /= norm_factor;
955 }
956 }
957 }
958 }
959 }
960}
961
962impl ProcessingStage for QuantumSuperpositionStage {
963 fn process(&mut self, frame: Frame) -> Result<Frame> {
964 self.process_superposition(&frame)
965 }
966
967 fn name(&self) -> &str {
968 "QuantumSuperposition"
969 }
970}
971
972pub struct QuantumAdaptiveStreamPipeline {
974 quantum_processor: QuantumStreamProcessor,
976 stages: Vec<Box<dyn ProcessingStage>>,
978 performancemetrics: Arc<Mutex<HashMap<String, f64>>>,
980 adaptation_counter: usize,
982}
983
984impl QuantumAdaptiveStreamPipeline {
985 pub fn new(_stagenames: Vec<String>) -> Self {
987 let quantum_processor = QuantumStreamProcessor::new(_stagenames);
988
989 Self {
990 quantum_processor,
991 stages: Vec::new(),
992 performancemetrics: Arc::new(Mutex::new(HashMap::new())),
993 adaptation_counter: 0,
994 }
995 }
996
997 pub fn add_quantum_stage<S: ProcessingStage + 'static>(mut self, stage: S) -> Self {
999 self.stages.push(Box::new(stage));
1000 self
1001 }
1002
1003 pub fn process_quantum_optimized(&mut self, frame: Frame) -> Result<Frame> {
1005 let (enhanced_frame, decision) = self.quantum_processor.process_quantum_frame(frame)?;
1007
1008 let mut current_frame = enhanced_frame;
1010
1011 for stage in &mut self.stages {
1012 let stagename = stage.name().to_string();
1013 let start_time = Instant::now();
1014
1015 let priority = decision.stage_priorities.get(&stagename).unwrap_or(&1.0);
1017
1018 if *priority > 0.5 {
1019 current_frame = stage.process(current_frame)?;
1020
1021 let processing_time = start_time.elapsed().as_secs_f64();
1022 let performance = 1.0 / (1.0 + processing_time); if let Ok(mut metrics) = self.performancemetrics.lock() {
1026 metrics.insert(stagename.clone(), performance);
1027 }
1028
1029 self.quantum_processor
1031 .update_performance(&stagename, performance);
1032 }
1033 }
1034
1035 self.adaptation_counter += 1;
1036 Ok(current_frame)
1037 }
1038
1039 pub fn get_quantum_metrics(&self) -> HashMap<String, f64> {
1041 self.performancemetrics
1042 .lock()
1043 .expect("Mutex should not be poisoned")
1044 .clone()
1045 }
1046}
1047
1048#[cfg(test)]
1049mod tests {
1050 use super::*;
1051
1052 #[test]
1053 fn test_quantum_amplitude() {
1054 let mut amplitude = QuantumAmplitude::new(0.6, 0.8);
1055 assert!((amplitude.probability() - 1.0).abs() < 1e-10);
1056
1057 amplitude.normalize();
1058 assert!((amplitude.probability() - 1.0).abs() < 1e-10);
1059 }
1060
1061 #[test]
1062 fn test_quantum_processing_state() {
1063 let _stagenames = vec!["stage1".to_string(), "stage2".to_string()];
1064 let mut state = QuantumProcessingState::new(&_stagenames);
1065
1066 let hamiltonian = QuantumHamiltonian::new(&_stagenames);
1067 state.evolve(0.1, &hamiltonian);
1068
1069 let decision = state.measure();
1070 assert!(decision.confidence >= 0.0 && decision.confidence <= 1.0);
1071 }
1072
1073 #[test]
1074 #[ignore = "Test failure - unwrap on None in scirs2-core/src/simd/dot.rs:511"]
1075 fn test_quantum_annealing_stage() {
1076 let mut params = HashMap::new();
1077 params.insert("blur_sigma".to_string(), 1.0);
1078 params.insert("edge_threshold".to_string(), 0.1);
1079
1080 let mut annealing_stage = QuantumAnnealingStage::new(params);
1081
1082 let frame = Frame {
1083 data: Array2::from_shape_fn((10, 10), |(y, x)| (x + y) as f32 / 20.0),
1084 timestamp: Instant::now(),
1085 index: 0,
1086 metadata: Some(FrameMetadata {
1087 width: 10,
1088 height: 10,
1089 fps: 30.0,
1090 channels: 1,
1091 }),
1092 };
1093
1094 let result = annealing_stage.process(frame);
1095 assert!(result.is_ok());
1096 }
1097
1098 #[test]
1099 fn test_quantum_entanglement_stage() {
1100 let mut entanglement_stage = QuantumEntanglementStage::new(6, 0.1);
1101
1102 let frame = Frame {
1103 data: Array2::from_shape_fn((20, 20), |(y, x)| (x as f32 + y as f32) / 40.0),
1104 timestamp: Instant::now(),
1105 index: 0,
1106 metadata: None,
1107 };
1108
1109 let result = entanglement_stage.process(frame);
1110 assert!(result.is_ok());
1111 }
1112
1113 #[test]
1114 #[ignore = "Test failure - unwrap on None in scirs2-core/src/simd/dot.rs:511"]
1115 fn test_quantum_superposition_stage() {
1116 let mut superposition_stage = QuantumSuperpositionStage::new(4);
1117
1118 let frame = Frame {
1119 data: Array2::from_shape_fn((15, 15), |(y, x)| ((x * y) as f32).sin()),
1120 timestamp: Instant::now(),
1121 index: 0,
1122 metadata: None,
1123 };
1124
1125 let result = superposition_stage.process(frame);
1126 assert!(result.is_ok());
1127
1128 let performancemetrics = vec![0.8, 0.6, 0.9, 0.7];
1130 superposition_stage.update_weights(&performancemetrics);
1131 }
1132
1133 #[test]
1134 fn test_quantum_stream_processor() {
1135 let _stagenames = vec!["blur".to_string(), "edge".to_string()];
1136 let mut processor = QuantumStreamProcessor::new(_stagenames);
1137
1138 let frame = Frame {
1139 data: Array2::from_shape_fn((8, 8), |(y, x)| (x + y) as f32 / 16.0),
1140 timestamp: Instant::now(),
1141 index: 0,
1142 metadata: None,
1143 };
1144
1145 let result = processor.process_quantum_frame(frame);
1146 assert!(result.is_ok());
1147
1148 processor.update_performance("blur", 0.8);
1149 processor.update_performance("edge", 0.9);
1150 }
1151}