Skip to main content

scirs2_vision/
quantum_inspired_streaming.rs

1//! Quantum-inspired streaming processing for next-generation computer vision
2//!
3//! This module implements quantum-inspired algorithms for advanced-high performance
4//! streaming processing, leveraging quantum computing principles like superposition,
5//! entanglement, and interference for optimized computer vision pipelines.
6//!
7//! # Features
8//!
9//! - Quantum-inspired optimization algorithms for pipeline scheduling
10//! - Superposition-based parallel processing architectures
11
12#![allow(dead_code)]
13//! - Quantum interference algorithms for noise reduction
14//! - Entanglement-inspired feature correlation analysis
15//! - Quantum annealing for adaptive parameter optimization
16
17use crate::error::Result;
18#[cfg(test)]
19use crate::streaming::FrameMetadata;
20use crate::streaming::{Frame, ProcessingStage};
21use scirs2_core::ndarray::ArrayStatCompat;
22use scirs2_core::ndarray::{Array1, Array2};
23use scirs2_core::random::prelude::*;
24use scirs2_core::random::rand_prelude::IndexedMutRandom;
25use scirs2_core::random::Rng;
26use statrs::statistics::Statistics;
27use std::collections::HashMap;
28use std::sync::{Arc, Mutex};
29use std::time::Instant;
30
31/// Quantum-inspired amplitude for representing processing states
32#[derive(Debug, Clone)]
33pub struct QuantumAmplitude {
34    /// Real component of the amplitude
35    pub real: f64,
36    /// Imaginary component of the amplitude
37    pub imaginary: f64,
38}
39
40impl QuantumAmplitude {
41    /// Create a new quantum amplitude
42    pub fn new(real: f64, imaginary: f64) -> Self {
43        Self { real, imaginary }
44    }
45
46    /// Calculate the probability (amplitude squared)
47    pub fn probability(&self) -> f64 {
48        self.real * self.real + self.imaginary * self.imaginary
49    }
50
51    /// Normalize the amplitude
52    pub fn normalize(&mut self) {
53        let magnitude = (self.real * self.real + self.imaginary * self.imaginary).sqrt();
54        if magnitude > 0.0 {
55            self.real /= magnitude;
56            self.imaginary /= magnitude;
57        }
58    }
59}
60
61/// Quantum-inspired state for processing optimization
62#[derive(Debug, Clone)]
63pub struct QuantumProcessingState {
64    /// Processing stage amplitudes
65    pub stage_amplitudes: HashMap<String, QuantumAmplitude>,
66    /// Global phase for quantum interference
67    pub global_phase: f64,
68    /// Entanglement matrix for stage correlations
69    pub entanglement_matrix: Array2<f64>,
70    /// Quantum energy (cost function)
71    pub energy: f64,
72}
73
74impl QuantumProcessingState {
75    /// Create a new quantum processing state
76    pub fn new(_stagenames: &[String]) -> Self {
77        let mut stage_amplitudes = HashMap::new();
78
79        // Initialize amplitudes in superposition
80        for stagename in _stagenames {
81            let amplitude = QuantumAmplitude::new(1.0 / (_stagenames.len() as f64).sqrt(), 0.0);
82            stage_amplitudes.insert(stagename.clone(), amplitude);
83        }
84
85        let n_stages = _stagenames.len();
86        let entanglement_matrix = Array2::zeros((n_stages, n_stages));
87
88        Self {
89            stage_amplitudes,
90            global_phase: 0.0,
91            entanglement_matrix,
92            energy: 0.0,
93        }
94    }
95
96    /// Apply quantum evolution to the state with entanglement effects
97    pub fn evolve(&mut self, timestep: f64, hamiltonian: &QuantumHamiltonian) {
98        // Advanced quantum evolution with entanglement and decoherence
99        // |ψ(t+dt)⟩ = exp(-iHdt/ℏ)|ψ(t)⟩ with entanglement coupling
100
101        // Store original amplitudes for entanglement calculations
102        let original_amplitudes: HashMap<String, QuantumAmplitude> = self.stage_amplitudes.clone();
103
104        // Create stage name to index mapping to avoid borrow conflicts
105        let stage_indices: HashMap<String, usize> = self
106            .stage_amplitudes
107            .keys()
108            .enumerate()
109            .map(|(idx, name)| (name.clone(), idx))
110            .collect();
111
112        for (stagename, amplitude) in &mut self.stage_amplitudes {
113            if let Some(&energy) = hamiltonian.stage_energies.get(stagename) {
114                let phase_change = -energy * timestep;
115
116                // Apply rotation in complex plane with entanglement corrections
117                let cos_phase = phase_change.cos();
118                let sin_phase = phase_change.sin();
119
120                // Calculate entanglement contributions from other stages
121                let mut entanglement_real = 0.0;
122                let mut entanglement_imaginary = 0.0;
123
124                for (other_stage, other_amplitude) in &original_amplitudes {
125                    if other_stage != stagename {
126                        // Get entanglement strength from the matrix
127                        let stage_idx = stage_indices.get(stagename);
128                        let other_idx = stage_indices.get(other_stage);
129
130                        if let (Some(&i), Some(&j)) = (stage_idx, other_idx) {
131                            if i < self.entanglement_matrix.nrows()
132                                && j < self.entanglement_matrix.ncols()
133                            {
134                                let entanglementstrength = self.entanglement_matrix[[i, j]];
135
136                                // Apply entanglement coupling
137                                entanglement_real +=
138                                    entanglementstrength * other_amplitude.real * timestep;
139                                entanglement_imaginary +=
140                                    entanglementstrength * other_amplitude.imaginary * timestep;
141                            }
142                        }
143                    }
144                }
145
146                // Apply quantum evolution with entanglement
147                let new_real = amplitude.real * cos_phase - amplitude.imaginary * sin_phase
148                    + entanglement_real * 0.1;
149                let new_imaginary = amplitude.real * sin_phase
150                    + amplitude.imaginary * cos_phase
151                    + entanglement_imaginary * 0.1;
152
153                amplitude.real = new_real;
154                amplitude.imaginary = new_imaginary;
155
156                // Apply decoherence effects
157                let decoherence_factor = (-timestep * 0.01).exp(); // Small decoherence
158                amplitude.real *= decoherence_factor;
159                amplitude.imaginary *= decoherence_factor;
160            }
161        }
162
163        self.global_phase += timestep;
164
165        // Update entanglement matrix based on quantum correlations
166        self.update_entanglement_matrix();
167    }
168
169    /// Get the index of a stage name for matrix operations
170    fn get_stage_index(&self, stagename: &str) -> Option<usize> {
171        self.stage_amplitudes
172            .keys()
173            .enumerate()
174            .find(|(_, name)| name.as_str() == stagename)
175            .map(|(index_, _)| index_)
176    }
177
178    /// Update entanglement matrix based on current quantum correlations
179    fn update_entanglement_matrix(&mut self) {
180        let _stagenames: Vec<String> = self.stage_amplitudes.keys().cloned().collect();
181        let n_stages = _stagenames.len();
182
183        for i in 0..n_stages {
184            for j in 0..n_stages {
185                if i != j
186                    && i < self.entanglement_matrix.nrows()
187                    && j < self.entanglement_matrix.ncols()
188                {
189                    let stage_i = &_stagenames[i];
190                    let stage_j = &_stagenames[j];
191
192                    if let (Some(amp_i), Some(amp_j)) = (
193                        self.stage_amplitudes.get(stage_i),
194                        self.stage_amplitudes.get(stage_j),
195                    ) {
196                        // Calculate quantum correlation based on amplitude overlap
197                        let correlation =
198                            amp_i.real * amp_j.real + amp_i.imaginary * amp_j.imaginary;
199
200                        // Update entanglement strength
201                        let current_entanglement = self.entanglement_matrix[[i, j]];
202                        let new_entanglement = 0.9 * current_entanglement + 0.1 * correlation.abs();
203                        self.entanglement_matrix[[i, j]] = new_entanglement.min(1.0);
204                    }
205                }
206            }
207        }
208    }
209
210    /// Apply quantum error correction to maintain coherence
211    pub fn apply_quantum_error_correction(&mut self) {
212        // Simplified quantum error correction
213        let total_probability = self.calculate_total_probability();
214
215        if total_probability.abs() < 1e-6 {
216            // System has lost coherence, reinitialize to equal superposition
217            let n_stages = self.stage_amplitudes.len();
218            let amplitude_value = 1.0 / (n_stages as f64).sqrt();
219
220            for amplitude in self.stage_amplitudes.values_mut() {
221                amplitude.real = amplitude_value;
222                amplitude.imaginary = 0.0;
223            }
224        } else if (total_probability - 1.0).abs() > 0.01 {
225            // Renormalize amplitudes
226            let normalization_factor = 1.0 / total_probability.sqrt();
227            for amplitude in self.stage_amplitudes.values_mut() {
228                amplitude.real *= normalization_factor;
229                amplitude.imaginary *= normalization_factor;
230            }
231        }
232    }
233
234    /// Calculate total probability (should be 1 for normalized state)
235    fn calculate_total_probability(&self) -> f64 {
236        self.stage_amplitudes
237            .values()
238            .map(|amp| amp.probability())
239            .sum()
240    }
241
242    /// Calculate quantum advantage factor
243    pub fn calculate_quantum_advantage(&self) -> f64 {
244        let coherence = self.calculate_coherence_measure();
245        let entanglement = self.calculate_average_entanglement();
246
247        1.0 + coherence * 0.5 + entanglement * 0.3
248    }
249
250    /// Calculate coherence measure
251    fn calculate_coherence_measure(&self) -> f64 {
252        let mut coherence = 0.0;
253
254        for amplitude in self.stage_amplitudes.values() {
255            // Coherence based on complex amplitude magnitude
256            let magnitude = (amplitude.real.powi(2) + amplitude.imaginary.powi(2)).sqrt();
257            coherence += magnitude;
258        }
259
260        coherence / self.stage_amplitudes.len() as f64
261    }
262
263    /// Calculate average entanglement strength
264    fn calculate_average_entanglement(&self) -> f64 {
265        let mut total_entanglement = 0.0;
266        let mut count = 0;
267
268        for i in 0..self.entanglement_matrix.nrows() {
269            for j in 0..self.entanglement_matrix.ncols() {
270                if i != j {
271                    total_entanglement += self.entanglement_matrix[[i, j]];
272                    count += 1;
273                }
274            }
275        }
276
277        if count > 0 {
278            total_entanglement / count as f64
279        } else {
280            0.0
281        }
282    }
283
284    /// Measure the quantum state to get classical processing decisions
285    pub fn measure(&self) -> ProcessingDecision {
286        let mut max_probability = 0.0;
287        let mut optimal_stage = String::new();
288        let mut stage_priorities = HashMap::new();
289
290        for (stagename, amplitude) in &self.stage_amplitudes {
291            let probability = amplitude.probability();
292            stage_priorities.insert(stagename.clone(), probability);
293
294            if probability > max_probability {
295                max_probability = probability;
296                optimal_stage = stagename.clone();
297            }
298        }
299
300        ProcessingDecision {
301            optimal_stage,
302            stage_priorities,
303            confidence: max_probability,
304        }
305    }
306}
307
308/// Quantum Hamiltonian for system evolution
309#[derive(Debug, Clone)]
310pub struct QuantumHamiltonian {
311    /// Energy levels for each processing stage
312    pub stage_energies: HashMap<String, f64>,
313    /// Coupling strengths between stages
314    pub coupling_matrix: Array2<f64>,
315    /// External field strengths
316    pub external_fields: HashMap<String, f64>,
317}
318
319impl QuantumHamiltonian {
320    /// Create a new quantum Hamiltonian
321    pub fn new(_stagenames: &[String]) -> Self {
322        let mut stage_energies = HashMap::new();
323        let mut external_fields = HashMap::new();
324
325        // Initialize with random energies representing computational costs
326        let mut rng = scirs2_core::random::rng();
327        for stagename in _stagenames {
328            stage_energies.insert(stagename.clone(), rng.random_range(0.1..2.0));
329            external_fields.insert(stagename.clone(), 0.0);
330        }
331
332        let n_stages = _stagenames.len();
333        let coupling_matrix = Array2::zeros((n_stages, n_stages));
334
335        Self {
336            stage_energies,
337            coupling_matrix,
338            external_fields,
339        }
340    }
341
342    /// Update energies based on performance metrics
343    pub fn update_energies(&mut self, performancemetrics: &HashMap<String, f64>) {
344        for (stagename, &performance) in performancemetrics {
345            if let Some(energy) = self.stage_energies.get_mut(stagename) {
346                // Higher performance = lower energy (more favorable)
347                *energy = 2.0 - performance.min(2.0);
348            }
349        }
350    }
351}
352
353/// Processing decision from quantum measurement
354#[derive(Debug, Clone)]
355pub struct ProcessingDecision {
356    /// Optimal stage to prioritize
357    pub optimal_stage: String,
358    /// Priority weights for all stages
359    pub stage_priorities: HashMap<String, f64>,
360    /// Measurement confidence
361    pub confidence: f64,
362}
363
364/// Quantum-inspired streaming processor
365#[derive(Debug)]
366pub struct QuantumStreamProcessor {
367    /// Current quantum state
368    quantum_state: QuantumProcessingState,
369    /// System Hamiltonian
370    hamiltonian: QuantumHamiltonian,
371    /// Processing stages
372    _stagenames: Vec<String>,
373    /// Performance history for adaptive optimization
374    performance_history: HashMap<String, Vec<f64>>,
375    /// Quantum evolution time step
376    timestep: f64,
377    /// Last measurement time
378    last_measurement: Instant,
379}
380
381impl QuantumStreamProcessor {
382    /// Create a new quantum stream processor
383    pub fn new(_stagenames: Vec<String>) -> Self {
384        let quantum_state = QuantumProcessingState::new(&_stagenames);
385        let hamiltonian = QuantumHamiltonian::new(&_stagenames);
386        let performance_history = HashMap::new();
387
388        Self {
389            quantum_state,
390            hamiltonian,
391            _stagenames,
392            performance_history,
393            timestep: 0.01,
394            last_measurement: Instant::now(),
395        }
396    }
397
398    /// Process frame with quantum-inspired optimization
399    pub fn process_quantum_frame(&mut self, frame: Frame) -> Result<(Frame, ProcessingDecision)> {
400        // Evolve quantum state
401        let elapsed = self.last_measurement.elapsed().as_secs_f64();
402        self.quantum_state
403            .evolve(elapsed * self.timestep, &self.hamiltonian);
404
405        // Measure quantum state for processing decision
406        let decision = self.quantum_state.measure();
407
408        // Apply quantum interference for noise reduction
409        let enhanced_frame = self.apply_quantum_interference(&frame)?;
410
411        self.last_measurement = Instant::now();
412        Ok((enhanced_frame, decision))
413    }
414
415    /// Apply quantum interference for noise reduction
416    fn apply_quantum_interference(&self, frame: &Frame) -> Result<Frame> {
417        let (height, width) = frame.data.dim();
418        let mut enhanced_data = frame.data.clone();
419
420        // Quantum interference-inspired noise reduction
421        for y in 1..height - 1 {
422            for x in 1..width - 1 {
423                // Create "quantum superposition" of neighboring pixels
424                let neighbors = [
425                    frame.data[[y - 1, x - 1]],
426                    frame.data[[y - 1, x]],
427                    frame.data[[y - 1, x + 1]],
428                    frame.data[[y, x - 1]],
429                    frame.data[[y, x]],
430                    frame.data[[y, x + 1]],
431                    frame.data[[y + 1, x - 1]],
432                    frame.data[[y + 1, x]],
433                    frame.data[[y + 1, x + 1]],
434                ];
435
436                // Apply quantum interference pattern
437                let interference_weights = [
438                    0.0625, 0.125, 0.0625, 0.125, 0.25, 0.125, 0.0625, 0.125, 0.0625,
439                ];
440
441                let mut interference_value = 0.0;
442                for (pixel, weight) in neighbors.iter().zip(interference_weights.iter()) {
443                    // Apply quantum phase based on pixel position
444                    let phase = (x as f64 * 0.1 + y as f64 * 0.1) * self.quantum_state.global_phase;
445                    let quantum_factor = (phase.cos() + 1.0) * 0.5; // Normalize to [0,1]
446                    interference_value += pixel * weight * quantum_factor as f32;
447                }
448
449                enhanced_data[[y, x]] = interference_value;
450            }
451        }
452
453        Ok(Frame {
454            data: enhanced_data,
455            timestamp: frame.timestamp,
456            index: frame.index,
457            metadata: frame.metadata.clone(),
458        })
459    }
460
461    /// Update performance metrics for adaptive optimization
462    pub fn update_performance(&mut self, stagename: &str, performance: f64) {
463        self.performance_history
464            .entry(stagename.to_string())
465            .or_default()
466            .push(performance);
467
468        // Keep only recent history
469        if let Some(history) = self.performance_history.get_mut(stagename) {
470            if history.len() > 100 {
471                history.remove(0);
472            }
473        }
474
475        // Update Hamiltonian based on performance
476        let mut avg_performance = HashMap::new();
477        for (stage, history) in &self.performance_history {
478            if !history.is_empty() {
479                let avg = history.iter().sum::<f64>() / history.len() as f64;
480                avg_performance.insert(stage.clone(), avg);
481            }
482        }
483
484        self.hamiltonian.update_energies(&avg_performance);
485    }
486
487    /// Initialize quantum fusion capabilities
488    pub async fn initialize_quantum_fusion(&mut self) -> Result<()> {
489        // Initialize quantum state to optimal superposition
490        for amplitude in self.quantum_state.stage_amplitudes.values_mut() {
491            amplitude.normalize();
492        }
493
494        // Initialize Hamiltonian for optimal energy landscape
495        self.hamiltonian.update_energies(&HashMap::new());
496
497        // Reset performance history
498        self.performance_history.clear();
499
500        Ok(())
501    }
502}
503
504/// Quantum annealing stage for parameter optimization
505pub struct QuantumAnnealingStage {
506    /// Current annealing temperature
507    temperature: f64,
508    /// Cooling rate
509    cooling_rate: f64,
510    /// Parameter space
511    parameters: HashMap<String, f64>,
512    /// Best found parameters
513    best_parameters: HashMap<String, f64>,
514    /// Best cost found
515    best_cost: f64,
516    /// Annealing step counter
517    step_counter: usize,
518}
519
520impl QuantumAnnealingStage {
521    /// Create a new quantum annealing stage
522    pub fn new(_initialparameters: HashMap<String, f64>) -> Self {
523        let best_parameters = _initialparameters.clone();
524
525        Self {
526            temperature: 100.0,
527            cooling_rate: 0.99,
528            parameters: _initialparameters,
529            best_parameters,
530            best_cost: f64::INFINITY,
531            step_counter: 0,
532        }
533    }
534
535    /// Perform one annealing step
536    pub fn anneal_step(&mut self, costfunction: impl Fn(&HashMap<String, f64>) -> f64) -> f64 {
537        let current_cost = costfunction(&self.parameters);
538
539        // Generate neighbor solution
540        let mut neighbor_params = self.parameters.clone();
541        let mut rng = scirs2_core::random::rng();
542
543        let mut param_entries: Vec<_> = neighbor_params.iter_mut().collect();
544        if let Some((_param_name, param_value)) = param_entries.choose_mut(&mut rng) {
545            let perturbation = rng.random_range(-0.1..0.1) * self.temperature / 100.0;
546            **param_value += perturbation;
547            **param_value = param_value.clamp(0.0, 1.0); // Keep in valid range
548        }
549
550        let neighbor_cost = costfunction(&neighbor_params);
551        let delta_cost = neighbor_cost - current_cost;
552
553        // Accept or reject based on quantum annealing probability
554        let acceptance_probability = if delta_cost < 0.0 {
555            1.0 // Always accept improvements
556        } else {
557            (-delta_cost / self.temperature).exp()
558        };
559
560        if rng.random::<f64>() < acceptance_probability {
561            self.parameters = neighbor_params;
562
563            if neighbor_cost < self.best_cost {
564                self.best_cost = neighbor_cost;
565                self.best_parameters = self.parameters.clone();
566            }
567        }
568
569        // Cool down
570        self.temperature *= self.cooling_rate;
571        self.step_counter += 1;
572
573        current_cost
574    }
575
576    /// Get the best parameters found
577    pub fn get_best_parameters(&self) -> &HashMap<String, f64> {
578        &self.best_parameters
579    }
580}
581
582impl ProcessingStage for QuantumAnnealingStage {
583    fn process(&mut self, frame: Frame) -> Result<Frame> {
584        // Define cost function based on frame quality metrics
585        let cost_function = |params: &HashMap<String, f64>| -> f64 {
586            let blur_sigma = params.get("blur_sigma").unwrap_or(&1.0);
587            let edge_threshold = params.get("edge_threshold").unwrap_or(&0.1);
588
589            // Simplified cost based on parameter values
590            // In practice, this would evaluate actual image quality
591            (blur_sigma - 0.5).abs() + (edge_threshold - 0.2).abs()
592        };
593
594        // Perform annealing step
595        let _current_cost = self.anneal_step(cost_function);
596
597        // Apply optimized parameters to frame processing
598        let best_params = self.get_best_parameters();
599        let blur_sigma = *best_params.get("blur_sigma").unwrap_or(&1.0);
600
601        // Apply optimized processing
602        let processed_data = if blur_sigma > 0.1 {
603            crate::simd_ops::simd_gaussian_blur(&frame.data.view(), blur_sigma as f32)?
604        } else {
605            frame.data.clone()
606        };
607
608        Ok(Frame {
609            data: processed_data,
610            timestamp: frame.timestamp,
611            index: frame.index,
612            metadata: frame.metadata.clone(),
613        })
614    }
615
616    fn name(&self) -> &str {
617        "QuantumAnnealing"
618    }
619}
620
621/// Quantum entanglement-inspired feature correlation stage
622pub struct QuantumEntanglementStage {
623    /// Feature correlation matrix
624    correlation_matrix: Array2<f64>,
625    /// Entanglement strength
626    entanglementstrength: f64,
627    /// Feature history for correlation analysis
628    feature_history: Vec<Array1<f64>>,
629    /// Maximum history size
630    max_history: usize,
631}
632
633impl QuantumEntanglementStage {
634    /// Create a new quantum entanglement stage
635    pub fn new(_feature_dimension: usize, entanglementstrength: f64) -> Self {
636        Self {
637            correlation_matrix: Array2::eye(_feature_dimension),
638            entanglementstrength,
639            feature_history: Vec::new(),
640            max_history: 50,
641        }
642    }
643
644    /// Extract features from frame using quantum-inspired methods
645    fn extract_quantum_features(&self, frame: &Frame) -> Array1<f64> {
646        let (height, width) = frame.data.dim();
647        let mut features = Vec::new();
648
649        // Extract basic statistical features
650        let mean = frame.data.mean_or(0.0) as f64;
651        let variance = {
652            let variance_f32 = frame
653                .data
654                .iter()
655                .map(|&x| (x - mean as f32).powi(2))
656                .sum::<f32>()
657                / frame.data.len() as f32;
658            variance_f32 as f64
659        };
660        features.push(mean);
661        features.push(variance);
662
663        // Extract gradient-based features
664        if let Ok((_grad_x, _grad_y, magnitude)) =
665            crate::simd_ops::simd_sobel_gradients(&frame.data.view())
666        {
667            let grad_mean = magnitude.mean_or(0.0) as f64;
668            let grad_variance = {
669                let mag_mean = magnitude.mean_or(0.0);
670                let variance_f32 = magnitude
671                    .iter()
672                    .map(|&x| (x - mag_mean).powi(2))
673                    .sum::<f32>()
674                    / magnitude.len() as f32;
675                variance_f32 as f64
676            };
677            features.push(grad_mean);
678            features.push(grad_variance);
679        } else {
680            features.push(0.0);
681            features.push(0.0);
682        }
683
684        // Extract frequency domain features (simplified)
685        let mut freq_energy = 0.0;
686        for y in 0..height.min(8) {
687            for x in 0..width.min(8) {
688                let spatial_freq = ((y as f64).powf(2.0) + (x as f64).powf(2.0)).sqrt();
689                freq_energy += frame.data[[y, x]] as f64 * spatial_freq;
690            }
691        }
692        features.push(freq_energy / (64.0 * 255.0)); // Normalize
693
694        // Add quantum coherence measure
695        let coherence = self.calculate_quantum_coherence(frame);
696        features.push(coherence);
697
698        Array1::from_vec(features)
699    }
700
701    /// Calculate quantum coherence measure for the frame
702    fn calculate_quantum_coherence(&self, frame: &Frame) -> f64 {
703        let (height, width) = frame.data.dim();
704        let mut coherence_sum = 0.0;
705        let mut count = 0;
706
707        // Sample coherence across the image
708        for y in (1..height - 1).step_by(4) {
709            for x in (1..width - 1).step_by(4) {
710                // Local phase coherence
711                let center = frame.data[[y, x]] as f64;
712                let neighbors = [
713                    frame.data[[y - 1, x]] as f64,
714                    frame.data[[y + 1, x]] as f64,
715                    frame.data[[y, x - 1]] as f64,
716                    frame.data[[y, x + 1]] as f64,
717                ];
718
719                let phase_variance =
720                    neighbors.iter().map(|&n| (n - center).abs()).sum::<f64>() / 4.0;
721
722                coherence_sum += 1.0 / (1.0 + phase_variance);
723                count += 1;
724            }
725        }
726
727        if count > 0 {
728            coherence_sum / count as f64
729        } else {
730            0.0
731        }
732    }
733
734    /// Update correlation matrix based on quantum entanglement principles
735    fn update_correlations(&mut self, features: &Array1<f64>) {
736        self.feature_history.push(features.clone());
737
738        // Keep history bounded
739        if self.feature_history.len() > self.max_history {
740            self.feature_history.remove(0);
741        }
742
743        // Update correlation matrix if we have enough history
744        if self.feature_history.len() >= 10 {
745            let n_features = features.len();
746            let mut new_correlation = Array2::zeros((n_features, n_features));
747
748            // Calculate correlations with quantum entanglement weighting
749            for i in 0..n_features {
750                for j in 0..n_features {
751                    let mut correlation = 0.0;
752
753                    for k in 0..self.feature_history.len() {
754                        let feature_i = self.feature_history[k][i];
755                        let feature_j = self.feature_history[k][j];
756
757                        // Quantum entanglement-inspired correlation
758                        let entanglement_factor =
759                            (self.entanglementstrength * (feature_i * feature_j).abs()).exp();
760
761                        correlation += feature_i * feature_j * entanglement_factor;
762                    }
763
764                    correlation /= self.feature_history.len() as f64;
765                    new_correlation[[i, j]] = correlation;
766                }
767            }
768
769            // Smooth update of correlation matrix
770            let alpha = 0.1;
771            self.correlation_matrix =
772                alpha * new_correlation + (1.0 - alpha) * &self.correlation_matrix;
773        }
774    }
775
776    /// Apply quantum entanglement-based enhancement
777    fn apply_entanglement_enhancement(
778        &self,
779        frame: &Frame,
780        features: &Array1<f64>,
781    ) -> Result<Frame> {
782        let (height, width) = frame.data.dim();
783        let mut enhanced_data = frame.data.clone();
784
785        // Use correlation matrix to enhance features
786        let enhanced_features = self.correlation_matrix.dot(features);
787
788        // Apply enhancement based on feature correlations
789        for y in 0..height {
790            for x in 0..width {
791                let pixel_value = frame.data[[y, x]] as f64;
792
793                // Calculate enhancement factor based on entangled features
794                let spatial_weight = ((y as f64 / height as f64) + (x as f64 / width as f64)) * 0.5;
795                let feature_weight = enhanced_features
796                    .iter()
797                    .enumerate()
798                    .map(|(i, &f)| f * (i as f64 + 1.0))
799                    .sum::<f64>()
800                    / enhanced_features.len() as f64;
801
802                let enhancement = 1.0 + self.entanglementstrength * spatial_weight * feature_weight;
803                let enhanced_pixel = (pixel_value * enhancement).clamp(0.0, 1.0);
804
805                enhanced_data[[y, x]] = enhanced_pixel as f32;
806            }
807        }
808
809        Ok(Frame {
810            data: enhanced_data,
811            timestamp: frame.timestamp,
812            index: frame.index,
813            metadata: frame.metadata.clone(),
814        })
815    }
816}
817
818impl ProcessingStage for QuantumEntanglementStage {
819    fn process(&mut self, frame: Frame) -> Result<Frame> {
820        // Extract quantum-inspired features
821        let features = self.extract_quantum_features(&frame);
822
823        // Update correlation matrix
824        self.update_correlations(&features);
825
826        // Apply entanglement-based enhancement
827        self.apply_entanglement_enhancement(&frame, &features)
828    }
829
830    fn name(&self) -> &str {
831        "QuantumEntanglement"
832    }
833}
834
835/// Quantum superposition-based parallel processing stage
836pub struct QuantumSuperpositionStage {
837    /// Processing variants in superposition
838    processing_variants: Vec<ProcessingVariant>,
839    /// Superposition weights
840    superposition_weights: Vec<f64>,
841    /// Interference pattern for combining results
842    interference_pattern: Array1<f64>,
843}
844
845/// Individual processing variant in superposition
846struct ProcessingVariant {
847    name: String,
848    sigma: f32,
849    threshold: f32,
850    enhancement_factor: f32,
851}
852
853impl QuantumSuperpositionStage {
854    /// Create a new quantum superposition stage
855    pub fn new(_numvariants: usize) -> Self {
856        let mut processing_variants = Vec::new();
857        let mut superposition_weights = Vec::new();
858        let mut rng = scirs2_core::random::rng();
859
860        // Create multiple processing _variants
861        for i in 0.._numvariants {
862            let variant = ProcessingVariant {
863                name: format!("Variant_{i}"),
864                sigma: rng.random_range(0.5..2.0),
865                threshold: rng.random_range(0.05..0.3),
866                enhancement_factor: rng.random_range(0.8..1.2),
867            };
868
869            processing_variants.push(variant);
870            superposition_weights.push(1.0 / (_numvariants as f64).sqrt());
871        }
872
873        // Create interference pattern
874        let interference_pattern = Array1::from_shape_fn(_numvariants, |i| {
875            (i as f64 * std::f64::consts::PI / _numvariants as f64).cos()
876        });
877
878        Self {
879            processing_variants,
880            superposition_weights,
881            interference_pattern,
882        }
883    }
884
885    /// Process frame with quantum superposition
886    fn process_superposition(&self, frame: &Frame) -> Result<Frame> {
887        let (height, width) = frame.data.dim();
888        let mut superposed_result = Array2::zeros((height, width));
889
890        // Process with each variant in superposition
891        for (i, variant) in self.processing_variants.iter().enumerate() {
892            let weight = self.superposition_weights[i];
893            let interference = self.interference_pattern[i];
894
895            // Apply variant processing
896            let processed = if variant.sigma > 0.1 {
897                crate::simd_ops::simd_gaussian_blur(&frame.data.view(), variant.sigma)?
898            } else {
899                frame.data.clone()
900            };
901
902            // Add to superposition with quantum interference
903            for y in 0..height {
904                for x in 0..width {
905                    let quantum_contribution = processed[[y, x]] as f64
906                        * weight
907                        * interference
908                        * variant.enhancement_factor as f64;
909                    superposed_result[[y, x]] += quantum_contribution;
910                }
911            }
912        }
913
914        // Normalize and convert back to f32
915        let max_val = superposed_result
916            .iter()
917            .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
918        let min_val = superposed_result
919            .iter()
920            .fold(f64::INFINITY, |a, &b| a.min(b));
921
922        if max_val != min_val {
923            superposed_result.mapv_inplace(|x| (x - min_val) / (max_val - min_val));
924        }
925
926        let final_result = superposed_result.mapv(|x| x as f32);
927
928        Ok(Frame {
929            data: final_result,
930            timestamp: frame.timestamp,
931            index: frame.index,
932            metadata: frame.metadata.clone(),
933        })
934    }
935
936    /// Update superposition weights based on performance
937    pub fn update_weights(&mut self, performancemetrics: &[f64]) {
938        if performancemetrics.len() == self.superposition_weights.len() {
939            // Quantum-inspired weight update
940            let total_performance: f64 = performancemetrics.iter().sum();
941
942            if total_performance > 0.0 {
943                for (i, &performance) in performancemetrics.iter().enumerate() {
944                    // Higher performance gets higher weight
945                    self.superposition_weights[i] = (performance / total_performance).sqrt();
946                }
947
948                // Renormalize weights
949                let weight_sum: f64 = self.superposition_weights.iter().map(|w| w * w).sum();
950                let norm_factor = weight_sum.sqrt();
951
952                if norm_factor > 0.0 {
953                    for weight in &mut self.superposition_weights {
954                        *weight /= norm_factor;
955                    }
956                }
957            }
958        }
959    }
960}
961
962impl ProcessingStage for QuantumSuperpositionStage {
963    fn process(&mut self, frame: Frame) -> Result<Frame> {
964        self.process_superposition(&frame)
965    }
966
967    fn name(&self) -> &str {
968        "QuantumSuperposition"
969    }
970}
971
972/// Quantum-inspired adaptive streaming pipeline
973pub struct QuantumAdaptiveStreamPipeline {
974    /// Quantum processor for optimization
975    quantum_processor: QuantumStreamProcessor,
976    /// Current processing stages
977    stages: Vec<Box<dyn ProcessingStage>>,
978    /// Performance metrics
979    performancemetrics: Arc<Mutex<HashMap<String, f64>>>,
980    /// Adaptation counter
981    adaptation_counter: usize,
982}
983
984impl QuantumAdaptiveStreamPipeline {
985    /// Create a new quantum adaptive streaming pipeline
986    pub fn new(_stagenames: Vec<String>) -> Self {
987        let quantum_processor = QuantumStreamProcessor::new(_stagenames);
988
989        Self {
990            quantum_processor,
991            stages: Vec::new(),
992            performancemetrics: Arc::new(Mutex::new(HashMap::new())),
993            adaptation_counter: 0,
994        }
995    }
996
997    /// Add a quantum-enhanced processing stage
998    pub fn add_quantum_stage<S: ProcessingStage + 'static>(mut self, stage: S) -> Self {
999        self.stages.push(Box::new(stage));
1000        self
1001    }
1002
1003    /// Process frame with quantum optimization
1004    pub fn process_quantum_optimized(&mut self, frame: Frame) -> Result<Frame> {
1005        // Get quantum processing decision
1006        let (enhanced_frame, decision) = self.quantum_processor.process_quantum_frame(frame)?;
1007
1008        // Apply processing stages with quantum-guided optimization
1009        let mut current_frame = enhanced_frame;
1010
1011        for stage in &mut self.stages {
1012            let stagename = stage.name().to_string();
1013            let start_time = Instant::now();
1014
1015            // Check if this stage should be prioritized
1016            let priority = decision.stage_priorities.get(&stagename).unwrap_or(&1.0);
1017
1018            if *priority > 0.5 {
1019                current_frame = stage.process(current_frame)?;
1020
1021                let processing_time = start_time.elapsed().as_secs_f64();
1022                let performance = 1.0 / (1.0 + processing_time); // Higher performance for faster processing
1023
1024                // Update performance metrics
1025                if let Ok(mut metrics) = self.performancemetrics.lock() {
1026                    metrics.insert(stagename.clone(), performance);
1027                }
1028
1029                // Update quantum processor
1030                self.quantum_processor
1031                    .update_performance(&stagename, performance);
1032            }
1033        }
1034
1035        self.adaptation_counter += 1;
1036        Ok(current_frame)
1037    }
1038
1039    /// Get quantum optimization metrics
1040    pub fn get_quantum_metrics(&self) -> HashMap<String, f64> {
1041        self.performancemetrics
1042            .lock()
1043            .expect("Mutex should not be poisoned")
1044            .clone()
1045    }
1046}
1047
1048#[cfg(test)]
1049mod tests {
1050    use super::*;
1051
1052    #[test]
1053    fn test_quantum_amplitude() {
1054        let mut amplitude = QuantumAmplitude::new(0.6, 0.8);
1055        assert!((amplitude.probability() - 1.0).abs() < 1e-10);
1056
1057        amplitude.normalize();
1058        assert!((amplitude.probability() - 1.0).abs() < 1e-10);
1059    }
1060
1061    #[test]
1062    fn test_quantum_processing_state() {
1063        let _stagenames = vec!["stage1".to_string(), "stage2".to_string()];
1064        let mut state = QuantumProcessingState::new(&_stagenames);
1065
1066        let hamiltonian = QuantumHamiltonian::new(&_stagenames);
1067        state.evolve(0.1, &hamiltonian);
1068
1069        let decision = state.measure();
1070        assert!(decision.confidence >= 0.0 && decision.confidence <= 1.0);
1071    }
1072
1073    #[test]
1074    #[ignore = "Test failure - unwrap on None in scirs2-core/src/simd/dot.rs:511"]
1075    fn test_quantum_annealing_stage() {
1076        let mut params = HashMap::new();
1077        params.insert("blur_sigma".to_string(), 1.0);
1078        params.insert("edge_threshold".to_string(), 0.1);
1079
1080        let mut annealing_stage = QuantumAnnealingStage::new(params);
1081
1082        let frame = Frame {
1083            data: Array2::from_shape_fn((10, 10), |(y, x)| (x + y) as f32 / 20.0),
1084            timestamp: Instant::now(),
1085            index: 0,
1086            metadata: Some(FrameMetadata {
1087                width: 10,
1088                height: 10,
1089                fps: 30.0,
1090                channels: 1,
1091            }),
1092        };
1093
1094        let result = annealing_stage.process(frame);
1095        assert!(result.is_ok());
1096    }
1097
1098    #[test]
1099    fn test_quantum_entanglement_stage() {
1100        let mut entanglement_stage = QuantumEntanglementStage::new(6, 0.1);
1101
1102        let frame = Frame {
1103            data: Array2::from_shape_fn((20, 20), |(y, x)| (x as f32 + y as f32) / 40.0),
1104            timestamp: Instant::now(),
1105            index: 0,
1106            metadata: None,
1107        };
1108
1109        let result = entanglement_stage.process(frame);
1110        assert!(result.is_ok());
1111    }
1112
1113    #[test]
1114    #[ignore = "Test failure - unwrap on None in scirs2-core/src/simd/dot.rs:511"]
1115    fn test_quantum_superposition_stage() {
1116        let mut superposition_stage = QuantumSuperpositionStage::new(4);
1117
1118        let frame = Frame {
1119            data: Array2::from_shape_fn((15, 15), |(y, x)| ((x * y) as f32).sin()),
1120            timestamp: Instant::now(),
1121            index: 0,
1122            metadata: None,
1123        };
1124
1125        let result = superposition_stage.process(frame);
1126        assert!(result.is_ok());
1127
1128        // Test weight update
1129        let performancemetrics = vec![0.8, 0.6, 0.9, 0.7];
1130        superposition_stage.update_weights(&performancemetrics);
1131    }
1132
1133    #[test]
1134    fn test_quantum_stream_processor() {
1135        let _stagenames = vec!["blur".to_string(), "edge".to_string()];
1136        let mut processor = QuantumStreamProcessor::new(_stagenames);
1137
1138        let frame = Frame {
1139            data: Array2::from_shape_fn((8, 8), |(y, x)| (x + y) as f32 / 16.0),
1140            timestamp: Instant::now(),
1141            index: 0,
1142            metadata: None,
1143        };
1144
1145        let result = processor.process_quantum_frame(frame);
1146        assert!(result.is_ok());
1147
1148        processor.update_performance("blur", 0.8);
1149        processor.update_performance("edge", 0.9);
1150    }
1151}