Skip to main content

scirs2_vision/
neuromorphic_streaming.rs

1//! Neuromorphic streaming processing for brain-inspired computer vision
2//!
3//! This module implements neuromorphic computing principles for advanced-efficient
4//! streaming processing, inspired by biological neural networks and spiking neurons.
5//!
6//! # Features
7//!
8//! - Spiking neural network processing stages
9//! - Event-driven computation for sparse data
10//! - Synaptic plasticity for adaptive learning
11
12#![allow(dead_code)]
13//! - Neuronal membrane dynamics modeling
14//! - Energy-efficient processing inspired by biological neurons
15
16use crate::error::Result;
17#[cfg(test)]
18use crate::streaming::FrameMetadata;
19use crate::streaming::{Frame, ProcessingStage};
20use scirs2_core::ndarray::ArrayStatCompat;
21use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
22use scirs2_core::random::prelude::*;
23use statrs::statistics::Statistics;
24use std::collections::{HashMap, VecDeque};
25use std::time::{Duration, Instant};
26
27/// Spiking neuron model for neuromorphic processing
28#[derive(Debug, Clone)]
29pub struct SpikingNeuron {
30    /// Membrane potential
31    pub membrane_potential: f64,
32    /// Resting potential
33    pub resting_potential: f64,
34    /// Threshold for spiking
35    pub spike_threshold: f64,
36    /// Reset potential after spike
37    pub reset_potential: f64,
38    /// Membrane time constant
39    pub tau_membrane: f64,
40    /// Refractory period
41    pub refractory_period: f64,
42    /// Time since last spike
43    pub time_since_spike: f64,
44    /// Input current
45    pub input_current: f64,
46    /// Spike history
47    pub spike_times: VecDeque<f64>,
48    /// Neuron activity state
49    pub is_refractory: bool,
50}
51
52impl SpikingNeuron {
53    /// Create a new spiking neuron
54    pub fn new() -> Self {
55        Self {
56            membrane_potential: -70.0, // mV
57            resting_potential: -70.0,
58            spike_threshold: -50.0,
59            reset_potential: -80.0,
60            tau_membrane: 10.0, // ms
61            refractory_period: 2.0,
62            time_since_spike: 0.0,
63            input_current: 0.0,
64            spike_times: VecDeque::with_capacity(100),
65            is_refractory: false,
66        }
67    }
68
69    /// Update neuron state using leaky integrate-and-fire model
70    pub fn update(&mut self, dt: f64, inputcurrent: f64) -> bool {
71        self.input_current = inputcurrent;
72        self.time_since_spike += dt;
73
74        // Check if in refractory period
75        if self.is_refractory {
76            if self.time_since_spike >= self.refractory_period {
77                self.is_refractory = false;
78                self.membrane_potential = self.resting_potential;
79            }
80            return false;
81        }
82
83        // Integrate membrane potential using Euler method
84        let leak_current = (self.resting_potential - self.membrane_potential) / self.tau_membrane;
85        let dvdt = leak_current + inputcurrent;
86        self.membrane_potential += dvdt * dt;
87
88        // Check for spike
89        if self.membrane_potential >= self.spike_threshold {
90            self.spike();
91            return true;
92        }
93
94        false
95    }
96
97    /// Generate a spike
98    fn spike(&mut self) {
99        self.membrane_potential = self.reset_potential;
100        self.is_refractory = true;
101        self.time_since_spike = 0.0;
102
103        // Record spike time
104        self.spike_times.push_back(self.get_current_time());
105
106        // Keep spike history bounded
107        if self.spike_times.len() > 100 {
108            self.spike_times.pop_front();
109        }
110    }
111
112    /// Get current time (simplified)
113    fn get_current_time(&self) -> f64 {
114        // In a real implementation, this would return actual time
115        scirs2_core::random::random::<f64>() * 1000.0
116    }
117
118    /// Calculate spike rate over recent history
119    pub fn spike_rate(&self, timewindow: f64) -> f64 {
120        let current_time = self.get_current_time();
121        let cutoff_time = current_time - timewindow;
122
123        let recent_spikes = self
124            .spike_times
125            .iter()
126            .filter(|&&spike_time| spike_time >= cutoff_time)
127            .count();
128
129        recent_spikes as f64 / timewindow
130    }
131}
132
133impl Default for SpikingNeuron {
134    fn default() -> Self {
135        Self::new()
136    }
137}
138
139/// Synaptic connection with plasticity
140#[derive(Debug, Clone)]
141pub struct PlasticSynapse {
142    /// Synaptic weight
143    pub weight: f64,
144    /// Pre-synaptic neuron ID
145    pub pre_neuron_id: usize,
146    /// Post-synaptic neuron ID
147    pub post_neuron_id: usize,
148    /// Time of last pre-synaptic spike
149    pub last_pre_spike: Option<f64>,
150    /// Time of last post-synaptic spike
151    pub last_post_spike: Option<f64>,
152    /// STDP parameters
153    pub stdp_params: STDPParameters,
154    /// Synaptic delay
155    pub delay: f64,
156}
157
158/// Spike-timing dependent plasticity parameters
159#[derive(Debug, Clone)]
160pub struct STDPParameters {
161    /// Learning rate for potentiation
162    pub a_plus: f64,
163    /// Learning rate for depression
164    pub a_minus: f64,
165    /// Time constant for potentiation
166    pub tau_plus: f64,
167    /// Time constant for depression
168    pub tau_minus: f64,
169    /// Maximum weight
170    pub w_max: f64,
171    /// Minimum weight
172    pub w_min: f64,
173}
174
175impl Default for STDPParameters {
176    fn default() -> Self {
177        Self {
178            a_plus: 0.01,
179            a_minus: 0.012,
180            tau_plus: 20.0,
181            tau_minus: 20.0,
182            w_max: 1.0,
183            w_min: 0.0,
184        }
185    }
186}
187
188impl PlasticSynapse {
189    /// Create a new plastic synapse
190    pub fn new(pre_id: usize, post_id: usize, initialweight: f64) -> Self {
191        Self {
192            weight: initialweight,
193            pre_neuron_id: pre_id,
194            post_neuron_id: post_id,
195            last_pre_spike: None,
196            last_post_spike: None,
197            stdp_params: STDPParameters::default(),
198            delay: 1.0, // ms
199        }
200    }
201
202    /// Update synaptic weight using STDP
203    pub fn update_weight(&mut self, pre_spike_time: Option<f64>, post_spiketime: Option<f64>) {
204        // Update spike times
205        if let Some(pre_time) = pre_spike_time {
206            self.last_pre_spike = Some(pre_time);
207        }
208        if let Some(post_time) = post_spiketime {
209            self.last_post_spike = Some(post_time);
210        }
211
212        // Apply STDP if both neurons have spiked
213        if let (Some(t_pre), Some(t_post)) = (self.last_pre_spike, self.last_post_spike) {
214            let dt = t_post - t_pre - self.delay;
215
216            let weight_change = if dt > 0.0 {
217                // Potentiation (post after pre)
218                self.stdp_params.a_plus * (-dt / self.stdp_params.tau_plus).exp()
219            } else {
220                // Depression (pre after post)
221                -self.stdp_params.a_minus * (dt / self.stdp_params.tau_minus).exp()
222            };
223
224            self.weight += weight_change;
225            self.weight = self
226                .weight
227                .clamp(self.stdp_params.w_min, self.stdp_params.w_max);
228        }
229    }
230
231    /// Calculate synaptic current
232    pub fn calculate_current(&self, prespike: bool) -> f64 {
233        if prespike {
234            self.weight * 10.0 // Scale factor for current injection
235        } else {
236            0.0
237        }
238    }
239}
240
241/// Neuromorphic spiking neural network
242#[derive(Debug)]
243pub struct SpikingNeuralNetwork {
244    /// Network neurons
245    neurons: Vec<SpikingNeuron>,
246    /// Synaptic connections
247    synapses: Vec<PlasticSynapse>,
248    /// Network topology (adjacency list)
249    connectivity: HashMap<usize, Vec<usize>>,
250    /// Time step for simulation
251    dt: f64,
252    /// Current simulation time
253    current_time: f64,
254    /// Spike events queue
255    spike_events: VecDeque<SpikeEvent>,
256}
257
258/// Spike event for event-driven processing
259#[derive(Debug, Clone)]
260pub struct SpikeEvent {
261    /// Neuron ID that spiked
262    pub neuron_id: usize,
263    /// Time of spike
264    pub spike_time: f64,
265    /// Spike amplitude
266    pub amplitude: f64,
267}
268
269impl SpikingNeuralNetwork {
270    /// Create a new spiking neural network
271    pub fn new(num_neurons: usize, connectivityprobability: f64) -> Self {
272        let mut neurons = Vec::with_capacity(num_neurons);
273        let mut synapses = Vec::new();
274        let mut connectivity = HashMap::new();
275        let mut rng = thread_rng();
276
277        // Initialize neurons
278        for _ in 0..num_neurons {
279            neurons.push(SpikingNeuron::new());
280        }
281
282        // Create random connectivity
283        for i in 0..num_neurons {
284            let mut connections = Vec::new();
285            for j in 0..num_neurons {
286                if i != j && rng.random::<f64>() < connectivityprobability {
287                    connections.push(j);
288
289                    // Create synapse
290                    let weight = rng.random_range(0.1..0.8);
291                    synapses.push(PlasticSynapse::new(i, j, weight));
292                }
293            }
294            connectivity.insert(i, connections);
295        }
296
297        Self {
298            neurons,
299            synapses,
300            connectivity,
301            dt: 0.1, // ms
302            current_time: 0.0,
303            spike_events: VecDeque::with_capacity(1000),
304        }
305    }
306
307    /// Process input through the spiking network
308    pub fn process_input(&mut self, input: &Array1<f64>) -> Array1<f64> {
309        let num_neurons = self.neurons.len();
310        let input_size = input.len();
311
312        // Clear previous spike events
313        self.spike_events.clear();
314
315        // Inject input current to first layer neurons
316        for (i, &input_val) in input.iter().enumerate() {
317            if i < num_neurons {
318                self.neurons[i].input_current = input_val * 50.0; // Scale input
319            }
320        }
321
322        // Simulate network for one time step
323        let mut spikes = vec![false; num_neurons];
324
325        // First, collect neuron spike states to avoid borrow checker issues
326        let neuron_spike_states: Vec<bool> = self
327            .neurons
328            .iter()
329            .map(|neuron| neuron.time_since_spike < self.dt)
330            .collect();
331
332        for (i, neuron) in self.neurons.iter_mut().enumerate() {
333            // Calculate total synaptic input
334            let mut synaptic_input = 0.0;
335
336            for synapse in &self.synapses {
337                if synapse.post_neuron_id == i {
338                    let prespike = neuron_spike_states[synapse.pre_neuron_id];
339                    synaptic_input += synapse.calculate_current(prespike);
340                }
341            }
342
343            // Add external input for input neurons
344            if i < input_size {
345                synaptic_input += neuron.input_current;
346            }
347
348            // Update neuron
349            let spiked = neuron.update(self.dt, synaptic_input);
350            spikes[i] = spiked;
351
352            if spiked {
353                self.spike_events.push_back(SpikeEvent {
354                    neuron_id: i,
355                    spike_time: self.current_time,
356                    amplitude: 1.0,
357                });
358            }
359        }
360
361        // Update synaptic weights using STDP
362        for synapse in &mut self.synapses {
363            let pre_spike_time = if spikes[synapse.pre_neuron_id] {
364                Some(self.current_time)
365            } else {
366                None
367            };
368
369            let post_spiketime = if spikes[synapse.post_neuron_id] {
370                Some(self.current_time)
371            } else {
372                None
373            };
374
375            synapse.update_weight(pre_spike_time, post_spiketime);
376        }
377
378        self.current_time += self.dt;
379
380        // Return spike rates as output
381        let timewindow = 10.0; // ms
382        let mut output = Array1::zeros(num_neurons);
383        for (i, neuron) in self.neurons.iter().enumerate() {
384            output[i] = neuron.spike_rate(timewindow);
385        }
386
387        output
388    }
389
390    /// Get network activity statistics
391    pub fn get_activity_stats(&self) -> NetworkActivityStats {
392        let total_spikes = self.spike_events.len();
393        let active_neurons = self
394            .neurons
395            .iter()
396            .filter(|neuron| neuron.spike_rate(10.0) > 0.0)
397            .count();
398
399        let avg_membrane_potential = self
400            .neurons
401            .iter()
402            .map(|neuron| neuron.membrane_potential)
403            .sum::<f64>()
404            / self.neurons.len() as f64;
405
406        let avg_weight = self
407            .synapses
408            .iter()
409            .map(|synapse| synapse.weight)
410            .sum::<f64>()
411            / self.synapses.len() as f64;
412
413        NetworkActivityStats {
414            total_spikes,
415            active_neurons,
416            avg_membrane_potential,
417            avg_synaptic_weight: avg_weight,
418            network_sparsity: active_neurons as f64 / self.neurons.len() as f64,
419        }
420    }
421}
422
423/// Network activity statistics
424#[derive(Debug, Clone)]
425pub struct NetworkActivityStats {
426    /// Total number of spikes in recent window
427    pub total_spikes: usize,
428    /// Number of active neurons
429    pub active_neurons: usize,
430    /// Average membrane potential
431    pub avg_membrane_potential: f64,
432    /// Average synaptic weight
433    pub avg_synaptic_weight: f64,
434    /// Network sparsity (fraction of active neurons)
435    pub network_sparsity: f64,
436}
437
438/// Neuromorphic edge detection stage using spiking neurons
439#[derive(Debug)]
440pub struct NeuromorphicEdgeDetector {
441    /// Spiking neural network for edge detection
442    snn: SpikingNeuralNetwork,
443    /// Input preprocessing parameters
444    preprocessing_params: EdgePreprocessingParams,
445    /// Adaptation parameters
446    adaptation_rate: f64,
447    /// Processing history for adaptation
448    processing_history: VecDeque<f64>,
449}
450
451/// Parameters for edge detection preprocessing
452#[derive(Debug, Clone)]
453pub struct EdgePreprocessingParams {
454    /// Contrast threshold
455    pub contrast_threshold: f64,
456    /// Temporal difference threshold
457    pub temporal_threshold: f64,
458    /// Spatial kernel size
459    pub spatial_kernel_size: usize,
460    /// Adaptation speed
461    pub adaptation_speed: f64,
462}
463
464impl Default for EdgePreprocessingParams {
465    fn default() -> Self {
466        Self {
467            contrast_threshold: 0.1,
468            temporal_threshold: 0.05,
469            spatial_kernel_size: 3,
470            adaptation_speed: 0.01,
471        }
472    }
473}
474
475impl NeuromorphicEdgeDetector {
476    /// Create a new neuromorphic edge detector
477    pub fn new(_inputsize: usize) -> Self {
478        let network_size = _inputsize * 2; // Hidden layer for processing
479        let snn = SpikingNeuralNetwork::new(network_size, 0.3);
480
481        Self {
482            snn,
483            preprocessing_params: EdgePreprocessingParams::default(),
484            adaptation_rate: 0.001,
485            processing_history: VecDeque::with_capacity(100),
486        }
487    }
488
489    /// Convert image patch to spike train
490    fn image_to_spikes(&self, imagepatch: &ArrayView2<f32>) -> Array1<f64> {
491        let (height, width) = imagepatch.dim();
492        let mut spike_input = Array1::zeros(height * width);
493
494        // Convert pixel intensities to spike rates
495        for (i, &pixel) in imagepatch.iter().enumerate() {
496            // Higher intensity = higher spike rate
497            let spike_rate = (pixel as f64 * 100.0).max(0.0); // Scale to reasonable spike rate
498            spike_input[i] = spike_rate;
499        }
500
501        spike_input
502    }
503
504    /// Apply neuromorphic edge detection
505    fn detect_edges_neuromorphic(&mut self, frame: &Frame) -> Result<Array2<f32>> {
506        let (height, width) = frame.data.dim();
507        let mut edge_map = Array2::zeros((height, width));
508
509        let kernel_size = self.preprocessing_params.spatial_kernel_size;
510        let half_kernel = kernel_size / 2;
511
512        // Process image in overlapping patches
513        for y in half_kernel..height.saturating_sub(half_kernel) {
514            for x in half_kernel..width.saturating_sub(half_kernel) {
515                // Extract local patch
516                let patch = frame.data.slice(scirs2_core::ndarray::s![
517                    y.saturating_sub(half_kernel)..=(y + half_kernel).min(height - 1),
518                    x.saturating_sub(half_kernel)..=(x + half_kernel).min(width - 1)
519                ]);
520
521                // Convert to spike input
522                let spike_input = self.image_to_spikes(&patch);
523
524                // Process through spiking network
525                let network_output = self.snn.process_input(&spike_input);
526
527                // Extract edge strength from network activity
528                let edge_strength = network_output.mean() as f32;
529                edge_map[[y, x]] = edge_strength;
530            }
531        }
532
533        // Normalize edge map
534        let max_edge = edge_map.iter().fold(0.0f32, |a, &b| a.max(b));
535        if max_edge > 0.0 {
536            edge_map.mapv_inplace(|x| x / max_edge);
537        }
538
539        Ok(edge_map)
540    }
541
542    /// Adapt preprocessing parameters based on performance
543    fn adapt_parameters(&mut self, performancemetric: f64) {
544        self.processing_history.push_back(performancemetric);
545
546        if self.processing_history.len() > 10 {
547            self.processing_history.pop_front();
548        }
549
550        // Calculate performance trend
551        if self.processing_history.len() >= 2 {
552            let recent_avg = self.processing_history.iter().rev().take(5).sum::<f64>()
553                / 5.0_f64.min(self.processing_history.len() as f64);
554
555            let older_avg = self.processing_history.iter().take(5).sum::<f64>()
556                / 5.0_f64.min(self.processing_history.len() as f64);
557
558            let trend = recent_avg - older_avg;
559
560            // Adapt thresholds based on trend
561            if trend < 0.0 {
562                // Performance declining, adjust parameters
563                self.preprocessing_params.contrast_threshold *=
564                    1.0 - self.preprocessing_params.adaptation_speed;
565                self.preprocessing_params.temporal_threshold *=
566                    1.0 + self.preprocessing_params.adaptation_speed;
567            } else if trend > 0.0 {
568                // Performance improving, continue current direction
569                self.preprocessing_params.contrast_threshold *=
570                    1.0 + self.preprocessing_params.adaptation_speed * 0.5;
571                self.preprocessing_params.temporal_threshold *=
572                    1.0 - self.preprocessing_params.adaptation_speed * 0.5;
573            }
574
575            // Keep parameters in valid ranges
576            self.preprocessing_params.contrast_threshold = self
577                .preprocessing_params
578                .contrast_threshold
579                .clamp(0.01, 0.5);
580            self.preprocessing_params.temporal_threshold = self
581                .preprocessing_params
582                .temporal_threshold
583                .clamp(0.01, 0.2);
584        }
585    }
586}
587
588impl ProcessingStage for NeuromorphicEdgeDetector {
589    fn process(&mut self, frame: Frame) -> Result<Frame> {
590        // Apply neuromorphic edge detection
591        let edge_map = self.detect_edges_neuromorphic(&frame)?;
592
593        // Calculate performance metric (edge density)
594        let edge_density =
595            edge_map.iter().filter(|&&x| x > 0.1).count() as f64 / edge_map.len() as f64;
596
597        // Adapt parameters
598        self.adapt_parameters(edge_density);
599
600        Ok(Frame {
601            data: edge_map,
602            timestamp: frame.timestamp,
603            index: frame.index,
604            metadata: frame.metadata,
605        })
606    }
607
608    fn name(&self) -> &str {
609        "NeuromorphicEdgeDetector"
610    }
611}
612
613/// Event-driven sparse processing stage
614#[derive(Debug)]
615pub struct EventDrivenProcessor {
616    /// Sparse event representation
617    event_buffer: VecDeque<PixelEvent>,
618    /// Event generation threshold
619    _eventthreshold: f32,
620    /// Previous frame for temporal differencing
621    previous_frame: Option<Array2<f32>>,
622    /// Spatial event clustering
623    spatial_clusters: HashMap<(usize, usize), EventCluster>,
624    /// Temporal integration window
625    temporal_window: Duration,
626    /// Processing efficiency metrics
627    efficiency_metrics: EfficiencyMetrics,
628}
629
630/// Pixel change event
631#[derive(Debug, Clone)]
632pub struct PixelEvent {
633    /// X pixel coordinate
634    pub x: usize,
635    /// Y pixel coordinate
636    pub y: usize,
637    /// Change magnitude
638    pub magnitude: f32,
639    /// Event timestamp
640    pub timestamp: Instant,
641    /// Event polarity (positive/negative change)
642    pub polarity: EventPolarity,
643}
644
645/// Event polarity for sparse representation
646#[derive(Debug, Clone, PartialEq)]
647pub enum EventPolarity {
648    /// Positive intensity change
649    Positive,
650    /// Negative intensity change
651    Negative,
652}
653
654/// Spatial cluster of related events
655#[derive(Debug, Clone)]
656pub struct EventCluster {
657    /// Cluster center
658    pub center: (f32, f32),
659    /// Events in cluster
660    pub events: Vec<PixelEvent>,
661    /// Cluster activity strength
662    pub activity: f32,
663    /// Last update time
664    pub last_update: Instant,
665}
666
667/// Processing efficiency metrics
668#[derive(Debug, Clone)]
669pub struct EfficiencyMetrics {
670    /// Percentage of pixels that generated events
671    pub sparsity: f32,
672    /// Energy consumption estimate
673    pub energy_consumption: f32,
674    /// Processing speedup from sparsity
675    pub speedup_factor: f32,
676    /// Data compression ratio
677    pub compression_ratio: f32,
678}
679
680impl EventDrivenProcessor {
681    /// Create a new event-driven processor
682    pub fn new(_eventthreshold: f32) -> Self {
683        Self {
684            event_buffer: VecDeque::with_capacity(10000),
685            _eventthreshold,
686            previous_frame: None,
687            spatial_clusters: HashMap::new(),
688            temporal_window: Duration::from_millis(50),
689            efficiency_metrics: EfficiencyMetrics {
690                sparsity: 0.0,
691                energy_consumption: 0.0,
692                speedup_factor: 1.0,
693                compression_ratio: 1.0,
694            },
695        }
696    }
697
698    /// Generate events from frame differences
699    fn generate_events(&mut self, currentframe: &Array2<f32>) -> Vec<PixelEvent> {
700        let mut events = Vec::new();
701        let current_time = Instant::now();
702
703        if let Some(ref prev_frame) = self.previous_frame {
704            let (height, width) = currentframe.dim();
705
706            for y in 0..height {
707                for x in 0..width {
708                    let current_val = currentframe[[y, x]];
709                    let prev_val = prev_frame[[y, x]];
710                    let diff = current_val - prev_val;
711
712                    if diff.abs() > self._eventthreshold {
713                        let polarity = if diff > 0.0 {
714                            EventPolarity::Positive
715                        } else {
716                            EventPolarity::Negative
717                        };
718
719                        events.push(PixelEvent {
720                            x,
721                            y,
722                            magnitude: diff.abs(),
723                            timestamp: current_time,
724                            polarity,
725                        });
726                    }
727                }
728            }
729        }
730
731        self.previous_frame = Some(currentframe.clone());
732        events
733    }
734
735    /// Cluster events spatially for efficient processing
736    fn cluster_events(&mut self, events: &[PixelEvent]) {
737        const CLUSTER_RADIUS: f32 = 5.0;
738
739        // Clear old clusters
740        let current_time = Instant::now();
741        self.spatial_clusters.retain(|_, cluster| {
742            current_time.duration_since(cluster.last_update) < self.temporal_window
743        });
744
745        for event in events {
746            let mut assigned_to_cluster = false;
747
748            // Try to assign to existing cluster
749            for cluster in self.spatial_clusters.values_mut() {
750                let distance = ((event.x as f32 - cluster.center.0).powi(2)
751                    + (event.y as f32 - cluster.center.1).powi(2))
752                .sqrt();
753
754                if distance <= CLUSTER_RADIUS {
755                    cluster.events.push(event.clone());
756                    cluster.activity += event.magnitude;
757                    cluster.last_update = current_time;
758
759                    // Update cluster center
760                    let total_events = cluster.events.len() as f32;
761                    cluster.center = (
762                        (cluster.center.0 * (total_events - 1.0) + event.x as f32) / total_events,
763                        (cluster.center.1 * (total_events - 1.0) + event.y as f32) / total_events,
764                    );
765
766                    assigned_to_cluster = true;
767                    break;
768                }
769            }
770
771            // Create new cluster if not assigned
772            if !assigned_to_cluster {
773                let cluster = EventCluster {
774                    center: (event.x as f32, event.y as f32),
775                    events: vec![event.clone()],
776                    activity: event.magnitude,
777                    last_update: current_time,
778                };
779
780                self.spatial_clusters.insert((event.x, event.y), cluster);
781            }
782        }
783    }
784
785    /// Process events efficiently using sparse representation
786    fn process_events_sparse(&self, frameshape: (usize, usize)) -> Array2<f32> {
787        let (height, width) = frameshape;
788        let mut processed_frame = Array2::zeros((height, width));
789
790        // Process only active clusters
791        for cluster in self.spatial_clusters.values() {
792            if cluster.activity > self._eventthreshold {
793                // Apply processing to cluster region
794                let cluster_x = cluster.center.0 as usize;
795                let cluster_y = cluster.center.1 as usize;
796
797                // Simple enhancement based on cluster activity
798                let enhancement_radius = 2;
799                for dy in -enhancement_radius..=enhancement_radius {
800                    for dx in -enhancement_radius..=enhancement_radius {
801                        let x = (cluster_x as i32 + dx).clamp(0, width as i32 - 1) as usize;
802                        let y = (cluster_y as i32 + dy).clamp(0, height as i32 - 1) as usize;
803
804                        let distance = ((dx as f32).powi(2) + (dy as f32).powi(2)).sqrt();
805                        let weight = (1.0 - distance / enhancement_radius as f32).max(0.0);
806
807                        processed_frame[[y, x]] += cluster.activity * weight;
808                    }
809                }
810            }
811        }
812
813        // Normalize
814        let max_val = processed_frame.iter().fold(0.0f32, |a, &b| a.max(b));
815        if max_val > 0.0 {
816            processed_frame.mapv_inplace(|x| x / max_val);
817        }
818
819        processed_frame
820    }
821
822    /// Update efficiency metrics
823    fn update_efficiency_metrics(&mut self, events: &[PixelEvent], framesize: usize) {
824        let event_count = events.len();
825
826        // Calculate sparsity
827        self.efficiency_metrics.sparsity = event_count as f32 / framesize as f32;
828
829        // Estimate energy consumption (events require less energy than full processing)
830        self.efficiency_metrics.energy_consumption = self.efficiency_metrics.sparsity * 0.1;
831
832        // Calculate speedup from sparse processing
833        self.efficiency_metrics.speedup_factor = 1.0 / self.efficiency_metrics.sparsity.max(0.01);
834
835        // Calculate compression ratio
836        self.efficiency_metrics.compression_ratio = framesize as f32 / event_count.max(1) as f32;
837    }
838}
839
840impl ProcessingStage for EventDrivenProcessor {
841    fn process(&mut self, frame: Frame) -> Result<Frame> {
842        let framesize = frame.data.len();
843
844        // Generate events from temporal differences
845        let events = self.generate_events(&frame.data);
846
847        // Cluster events spatially
848        self.cluster_events(&events);
849
850        // Process using sparse event representation
851        let processed_data = self.process_events_sparse(frame.data.dim());
852
853        // Update efficiency metrics
854        self.update_efficiency_metrics(&events, framesize);
855
856        // Store events in buffer
857        for event in events {
858            self.event_buffer.push_back(event);
859
860            // Keep buffer bounded
861            if self.event_buffer.len() > 10000 {
862                self.event_buffer.pop_front();
863            }
864        }
865
866        Ok(Frame {
867            data: processed_data,
868            timestamp: frame.timestamp,
869            index: frame.index,
870            metadata: frame.metadata,
871        })
872    }
873
874    fn name(&self) -> &str {
875        "EventDrivenProcessor"
876    }
877}
878
879impl EventDrivenProcessor {
880    /// Get current efficiency metrics
881    pub fn get_efficiency_metrics(&self) -> &EfficiencyMetrics {
882        &self.efficiency_metrics
883    }
884
885    /// Get current event statistics
886    pub fn get_event_stats(&self) -> EventStats {
887        let total_events = self.event_buffer.len();
888        let active_clusters = self.spatial_clusters.len();
889
890        let positive_events = self
891            .event_buffer
892            .iter()
893            .filter(|event| event.polarity == EventPolarity::Positive)
894            .count();
895
896        let negative_events = total_events - positive_events;
897
898        let avg_magnitude = if total_events > 0 {
899            self.event_buffer
900                .iter()
901                .map(|event| event.magnitude)
902                .sum::<f32>()
903                / total_events as f32
904        } else {
905            0.0
906        };
907
908        EventStats {
909            total_events,
910            positive_events,
911            negative_events,
912            active_clusters,
913            avg_event_magnitude: avg_magnitude,
914            sparsity: self.efficiency_metrics.sparsity,
915        }
916    }
917}
918
919/// Event processing statistics
920#[derive(Debug, Clone)]
921pub struct EventStats {
922    /// Total number of events
923    pub total_events: usize,
924    /// Number of positive polarity events
925    pub positive_events: usize,
926    /// Number of negative polarity events
927    pub negative_events: usize,
928    /// Number of active spatial clusters
929    pub active_clusters: usize,
930    /// Average event magnitude
931    pub avg_event_magnitude: f32,
932    /// Data sparsity ratio
933    pub sparsity: f32,
934}
935
936/// Adaptive neuromorphic pipeline that combines multiple neuromorphic stages
937#[derive(Debug)]
938pub struct AdaptiveNeuromorphicPipeline {
939    /// Neuromorphic edge detector
940    edge_detector: NeuromorphicEdgeDetector,
941    /// Event-driven processor
942    event_processor: EventDrivenProcessor,
943    /// Processing mode selection
944    processing_mode: NeuromorphicMode,
945    /// Adaptation parameters
946    adaptation_params: AdaptationParams,
947    /// Performance history
948    performance_history: VecDeque<PerformanceSnapshot>,
949}
950
951/// Neuromorphic processing modes
952#[derive(Debug, Clone, PartialEq)]
953pub enum NeuromorphicMode {
954    /// High accuracy mode with full processing
955    HighAccuracy,
956    /// Balanced mode with selective processing
957    Balanced,
958    /// Advanced-efficient mode with maximum sparsity
959    AdvancedEfficient,
960}
961
962/// Adaptation parameters for neuromorphic processing
963#[derive(Debug, Clone)]
964pub struct AdaptationParams {
965    /// Performance threshold for mode switching
966    pub performance_threshold: f32,
967    /// Energy budget constraint
968    pub energy_budget: f32,
969    /// Adaptation learning rate
970    pub learning_rate: f32,
971    /// Minimum accuracy requirement
972    pub min_accuracy: f32,
973}
974
975/// Performance snapshot for adaptation
976#[derive(Debug, Clone)]
977pub struct PerformanceSnapshot {
978    /// Processing accuracy estimate
979    pub accuracy: f32,
980    /// Energy consumption
981    pub energy: f32,
982    /// Processing speed (FPS)
983    pub speed: f32,
984    /// Data sparsity
985    pub sparsity: f32,
986    /// Timestamp
987    pub timestamp: Instant,
988}
989
990impl AdaptiveNeuromorphicPipeline {
991    /// Create a new adaptive neuromorphic pipeline
992    pub fn new(_inputsize: usize) -> Self {
993        let edge_detector = NeuromorphicEdgeDetector::new(_inputsize);
994        let event_processor = EventDrivenProcessor::new(0.05);
995
996        Self {
997            edge_detector,
998            event_processor,
999            processing_mode: NeuromorphicMode::Balanced,
1000            adaptation_params: AdaptationParams {
1001                performance_threshold: 0.8,
1002                energy_budget: 1.0,
1003                learning_rate: 0.01,
1004                min_accuracy: 0.6,
1005            },
1006            performance_history: VecDeque::with_capacity(100),
1007        }
1008    }
1009
1010    /// Process frame with adaptive neuromorphic processing
1011    pub fn process_adaptive(&mut self, frame: Frame) -> Result<Frame> {
1012        let start_time = Instant::now();
1013
1014        // Select processing based on current mode
1015        let processed_frame = match self.processing_mode {
1016            NeuromorphicMode::HighAccuracy => {
1017                // Full neuromorphic processing
1018                let edge_frame = self.edge_detector.process(frame)?;
1019                self.event_processor.process(edge_frame)?
1020            }
1021            NeuromorphicMode::Balanced => {
1022                // Selective processing based on activity
1023                let event_stats = self.event_processor.get_event_stats();
1024
1025                if event_stats.sparsity > 0.1 {
1026                    // High activity, use edge detection
1027                    let edge_frame = self.edge_detector.process(frame)?;
1028                    self.event_processor.process(edge_frame)?
1029                } else {
1030                    // Low activity, use event processing only
1031                    self.event_processor.process(frame)?
1032                }
1033            }
1034            NeuromorphicMode::AdvancedEfficient => {
1035                // Event-driven processing only
1036                self.event_processor.process(frame)?
1037            }
1038        };
1039
1040        let processing_time = start_time.elapsed();
1041
1042        // Record performance snapshot
1043        let efficiency_metrics = self.event_processor.get_efficiency_metrics();
1044        let snapshot = PerformanceSnapshot {
1045            accuracy: self.estimate_accuracy(&processed_frame),
1046            energy: efficiency_metrics.energy_consumption,
1047            speed: 1.0 / processing_time.as_secs_f32(),
1048            sparsity: efficiency_metrics.sparsity,
1049            timestamp: Instant::now(),
1050        };
1051
1052        self.performance_history.push_back(snapshot);
1053        if self.performance_history.len() > 100 {
1054            self.performance_history.pop_front();
1055        }
1056
1057        // Adapt processing mode if needed
1058        self.adapt_processing_mode();
1059
1060        Ok(processed_frame)
1061    }
1062
1063    /// Estimate processing accuracy (simplified)
1064    fn estimate_accuracy(&self, frame: &Frame) -> f32 {
1065        // Simple heuristic based on information content
1066        let mean = frame.data.mean_or(0.0);
1067        let variance =
1068            frame.data.iter().map(|&x| (x - mean).powi(2)).sum::<f32>() / frame.data.len() as f32;
1069        let edge_density =
1070            frame.data.iter().filter(|&&x| x > 0.1).count() as f32 / frame.data.len() as f32;
1071
1072        (variance.sqrt() + edge_density).min(1.0)
1073    }
1074
1075    /// Adapt processing mode based on performance history
1076    fn adapt_processing_mode(&mut self) {
1077        if self.performance_history.len() < 10 {
1078            return;
1079        }
1080
1081        let recent_performance = &self
1082            .performance_history
1083            .iter()
1084            .rev()
1085            .take(10)
1086            .cloned()
1087            .collect::<Vec<_>>();
1088
1089        let avg_accuracy = recent_performance.iter().map(|p| p.accuracy).sum::<f32>()
1090            / recent_performance.len() as f32;
1091
1092        let avg_energy = recent_performance.iter().map(|p| p.energy).sum::<f32>()
1093            / recent_performance.len() as f32;
1094
1095        let avg_speed = recent_performance.iter().map(|p| p.speed).sum::<f32>()
1096            / recent_performance.len() as f32;
1097
1098        // Adaptation logic
1099        match self.processing_mode {
1100            NeuromorphicMode::HighAccuracy => {
1101                if avg_energy > self.adaptation_params.energy_budget && avg_speed < 30.0 {
1102                    self.processing_mode = NeuromorphicMode::Balanced;
1103                }
1104            }
1105            NeuromorphicMode::Balanced => {
1106                if avg_accuracy < self.adaptation_params.min_accuracy {
1107                    self.processing_mode = NeuromorphicMode::HighAccuracy;
1108                } else if avg_energy < self.adaptation_params.energy_budget * 0.5
1109                    && avg_speed > 60.0
1110                {
1111                    self.processing_mode = NeuromorphicMode::AdvancedEfficient;
1112                }
1113            }
1114            NeuromorphicMode::AdvancedEfficient => {
1115                if avg_accuracy < self.adaptation_params.min_accuracy * 0.8 {
1116                    self.processing_mode = NeuromorphicMode::Balanced;
1117                }
1118            }
1119        }
1120    }
1121
1122    /// Get current processing statistics
1123    pub fn get_processing_stats(&self) -> NeuromorphicProcessingStats {
1124        let efficiency_metrics = self.event_processor.get_efficiency_metrics();
1125        let event_stats = self.event_processor.get_event_stats();
1126
1127        let recent_performance = if !self.performance_history.is_empty() {
1128            self.performance_history
1129                .back()
1130                .expect("Performance history should not be empty after check")
1131                .clone()
1132        } else {
1133            PerformanceSnapshot {
1134                accuracy: 0.0,
1135                energy: 0.0,
1136                speed: 0.0,
1137                sparsity: 0.0,
1138                timestamp: Instant::now(),
1139            }
1140        };
1141
1142        NeuromorphicProcessingStats {
1143            current_mode: self.processing_mode.clone(),
1144            accuracy: recent_performance.accuracy,
1145            energy_consumption: efficiency_metrics.energy_consumption,
1146            processing_speed: recent_performance.speed,
1147            sparsity: efficiency_metrics.sparsity,
1148            speedup_factor: efficiency_metrics.speedup_factor,
1149            total_events: event_stats.total_events,
1150            active_clusters: event_stats.active_clusters,
1151        }
1152    }
1153
1154    /// Initialize adaptive learning capabilities
1155    pub async fn initialize_adaptive_learning(&mut self) -> Result<()> {
1156        // Reset performance history for fresh learning
1157        self.performance_history.clear();
1158
1159        // Initialize optimal processing mode
1160        self.processing_mode = NeuromorphicMode::Balanced;
1161
1162        // Reset adaptation parameters to defaults
1163        self.adaptation_params = AdaptationParams {
1164            performance_threshold: 0.8,
1165            energy_budget: 1.0,
1166            learning_rate: 0.01,
1167            min_accuracy: 0.6,
1168        };
1169
1170        // Edge detector and event processor initialization handled in constructor
1171
1172        Ok(())
1173    }
1174}
1175
1176/// Comprehensive neuromorphic processing statistics
1177#[derive(Debug, Clone)]
1178pub struct NeuromorphicProcessingStats {
1179    /// Current processing mode
1180    pub current_mode: NeuromorphicMode,
1181    /// Processing accuracy estimate
1182    pub accuracy: f32,
1183    /// Energy consumption
1184    pub energy_consumption: f32,
1185    /// Processing speed (FPS)
1186    pub processing_speed: f32,
1187    /// Data sparsity ratio
1188    pub sparsity: f32,
1189    /// Speedup factor from neuromorphic processing
1190    pub speedup_factor: f32,
1191    /// Total number of events processed
1192    pub total_events: usize,
1193    /// Number of active spatial clusters
1194    pub active_clusters: usize,
1195}
1196
1197#[cfg(test)]
1198mod tests {
1199    use super::*;
1200
1201    #[test]
1202    fn test_spiking_neuron() {
1203        let mut neuron = SpikingNeuron::new();
1204
1205        // Test with moderate input current (should not spike)
1206        let spiked = neuron.update(1.0, 10.0);
1207        assert!(!spiked);
1208        assert!(neuron.membrane_potential > neuron.resting_potential);
1209
1210        // Test spike generation with high current
1211        let mut spike_occurred = false;
1212        for _ in 0..100 {
1213            if neuron.update(1.0, 100.0) {
1214                spike_occurred = true;
1215                break;
1216            }
1217        }
1218        assert!(spike_occurred);
1219    }
1220
1221    #[test]
1222    fn test_plastic_synapse() {
1223        let mut synapse = PlasticSynapse::new(0, 1, 0.5);
1224
1225        // Test STDP with positive timing
1226        synapse.update_weight(Some(10.0), Some(15.0));
1227        assert!(synapse.weight >= 0.5); // Should increase
1228
1229        // Test STDP with negative timing
1230        synapse.update_weight(Some(20.0), Some(18.0));
1231        // Weight might decrease depending on timing
1232    }
1233
1234    #[test]
1235    fn test_spiking_neural_network() {
1236        let mut snn = SpikingNeuralNetwork::new(10, 0.2);
1237        let input = Array1::from_vec(vec![1.0, 0.5, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]);
1238
1239        let output = snn.process_input(&input);
1240        assert_eq!(output.len(), 10);
1241
1242        let stats = snn.get_activity_stats();
1243        assert!(stats.avg_membrane_potential < 0.0); // Should be negative
1244    }
1245
1246    #[test]
1247    fn test_neuromorphic_edge_detector() {
1248        let mut detector = NeuromorphicEdgeDetector::new(64);
1249
1250        let frame = Frame {
1251            data: Array2::from_shape_fn((8, 8), |(_y, x)| if x > 4 { 1.0 } else { 0.0 }),
1252            timestamp: Instant::now(),
1253            index: 0,
1254            metadata: Some(FrameMetadata {
1255                width: 8,
1256                height: 8,
1257                fps: 30.0,
1258                channels: 1,
1259            }),
1260        };
1261
1262        let result = detector.process(frame);
1263        assert!(result.is_ok());
1264
1265        let processed = result.expect("Result should be Ok after assertion");
1266        assert_eq!(processed.data.dim(), (8, 8));
1267    }
1268
1269    #[test]
1270    fn test_event_driven_processor() {
1271        let mut processor = EventDrivenProcessor::new(0.1);
1272
1273        // Create frame with some structure
1274        let frame1 = Frame {
1275            data: Array2::zeros((10, 10)),
1276            timestamp: Instant::now(),
1277            index: 0,
1278            metadata: None,
1279        };
1280
1281        let frame2 = Frame {
1282            data: Array2::from_shape_fn((10, 10), |(_x, y)| if y == 5 { 1.0 } else { 0.0 }),
1283            timestamp: Instant::now(),
1284            index: 1,
1285            metadata: None,
1286        };
1287
1288        // Process first frame
1289        let result1 = processor.process(frame1);
1290        assert!(result1.is_ok());
1291
1292        // Process second frame (should generate events)
1293        let result2 = processor.process(frame2);
1294        assert!(result2.is_ok());
1295
1296        let stats = processor.get_event_stats();
1297        println!("Event stats: {stats:?}");
1298    }
1299
1300    #[test]
1301    fn test_adaptive_neuromorphic_pipeline() {
1302        let mut pipeline = AdaptiveNeuromorphicPipeline::new(64);
1303
1304        let frame = Frame {
1305            data: Array2::from_shape_fn((8, 8), |(y, x)| (x + y) as f32 / 16.0),
1306            timestamp: Instant::now(),
1307            index: 0,
1308            metadata: None,
1309        };
1310
1311        let result = pipeline.process_adaptive(frame);
1312        assert!(result.is_ok());
1313
1314        let stats = pipeline.get_processing_stats();
1315        assert!(stats.sparsity >= 0.0 && stats.sparsity <= 1.0);
1316    }
1317}