Skip to main content

scirs2_vision/feature/
neural_features.rs

1//! Neural network-based feature detection and description
2//!
3//! This module provides advanced feature detection and description using neural networks,
4//! including SuperPoint-like architectures, learned descriptors, and GPU-accelerated inference.
5//!
6//! # Performance
7//!
8//! - GPU acceleration for real-time inference
9//! - Batched processing for multiple images
10//! - SIMD optimization for post-processing
11//! - Memory-efficient sparse feature representation
12//!
13//! # Algorithms
14//!
15//! - SuperPoint: Self-supervised deep learning for feature detection and description
16//! - Learned SIFT: Neural network enhanced SIFT descriptors
17//! - Deep Local Features: Advanced CNN-based local feature extraction
18//! - Attention-based Feature Matching: Transformer-based feature matching
19
20use crate::error::{Result, VisionError};
21use crate::feature::KeyPoint;
22use crate::gpu_ops::GpuVisionContext;
23use scirs2_core::ndarray::ArrayStatCompat;
24use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView2};
25use statrs::statistics::Statistics;
26
27/// Neural network model for feature detection and description
28pub struct NeuralFeatureNetwork {
29    /// Model weights for feature detection backbone
30    #[allow(dead_code)]
31    detection_weights: ModelWeights,
32    /// Model weights for descriptor head
33    #[allow(dead_code)]
34    descriptor_weights: ModelWeights,
35    /// GPU context for inference
36    gpu_context: Option<GpuVisionContext>,
37    /// Model configuration
38    config: NeuralFeatureConfig,
39}
40
41/// Model weights container
42#[derive(Clone)]
43pub struct ModelWeights {
44    /// Convolutional layer weights
45    #[allow(dead_code)]
46    conv_weights: Vec<Array3<f32>>,
47    /// Convolutional layer biases
48    #[allow(dead_code)]
49    conv_biases: Vec<Array1<f32>>,
50    /// Batch normalization weights
51    #[allow(dead_code)]
52    bn_weights: Vec<Array1<f32>>,
53    /// Batch normalization biases
54    #[allow(dead_code)]
55    bn_biases: Vec<Array1<f32>>,
56    /// Fully connected weights (for heads)
57    #[allow(dead_code)]
58    fc_weights: Vec<Array2<f32>>,
59    /// Fully connected biases
60    #[allow(dead_code)]
61    fc_biases: Vec<Array1<f32>>,
62}
63
64/// Configuration for neural feature detection
65#[derive(Clone)]
66pub struct NeuralFeatureConfig {
67    /// Input image size (must be multiple of 8)
68    pub input_size: (usize, usize),
69    /// Number of keypoints to detect
70    pub max_keypoints: usize,
71    /// Detection threshold for keypoints
72    pub detection_threshold: f32,
73    /// Non-maximum suppression radius
74    pub nms_radius: usize,
75    /// Descriptor dimension
76    pub descriptor_dim: usize,
77    /// Border removal distance
78    pub border_remove: usize,
79    /// Use GPU acceleration
80    pub use_gpu: bool,
81}
82
83impl Default for NeuralFeatureConfig {
84    fn default() -> Self {
85        Self {
86            input_size: (480, 640),
87            max_keypoints: 1024,
88            detection_threshold: 0.015,
89            nms_radius: 4,
90            descriptor_dim: 256,
91            border_remove: 4,
92            use_gpu: true,
93        }
94    }
95}
96
97/// SuperPoint-like neural feature detector
98pub struct SuperPointNet {
99    network: NeuralFeatureNetwork,
100}
101
102impl SuperPointNet {
103    /// Create a new SuperPoint network with default weights
104    pub fn new(config: Option<NeuralFeatureConfig>) -> Result<Self> {
105        let config = config.unwrap_or_default();
106
107        // Initialize with synthetic weights for demonstration
108        // In a real implementation, these would be loaded from a trained model
109        let detection_weights = Self::create_detection_weights(&config)?;
110        let descriptor_weights = Self::create_descriptor_weights(&config)?;
111
112        let gpu_context = if config.use_gpu {
113            GpuVisionContext::new().ok()
114        } else {
115            None
116        };
117
118        let network = NeuralFeatureNetwork {
119            detection_weights,
120            descriptor_weights,
121            gpu_context,
122            config,
123        };
124
125        Ok(Self { network })
126    }
127
128    /// Load SuperPoint network from file
129    #[allow(dead_code)]
130    pub fn from_file(_modelpath: &str, config: Option<NeuralFeatureConfig>) -> Result<Self> {
131        let config = config.unwrap_or_default();
132
133        // In a real implementation, this would load weights from a file
134        // For now, create synthetic weights
135        Self::new(Some(config))
136    }
137
138    /// Detect features and compute descriptors
139    pub fn detect_and_describe(
140        &self,
141        image: &ArrayView2<f32>,
142    ) -> Result<(Vec<KeyPoint>, Array2<f32>)> {
143        // Validate input size
144        let (height, width) = image.dim();
145        if height % 8 != 0 || width % 8 != 0 {
146            return Err(VisionError::InvalidInput(
147                "Input image dimensions must be multiples of 8 for neural feature detection"
148                    .to_string(),
149            ));
150        }
151
152        // Resize if necessary
153        let processed_image = if (height, width) != self.network.config.input_size {
154            self.resize_image(image, self.network.config.input_size)?
155        } else {
156            image.to_owned()
157        };
158
159        // Run inference
160        if let Some(ref gpu_ctx) = self.network.gpu_context {
161            self.gpu_inference(gpu_ctx, &processed_image.view())
162        } else {
163            self.cpu_inference(&processed_image.view())
164        }
165    }
166
167    /// GPU-accelerated inference
168    fn gpu_inference(
169        &self,
170        gpu_ctx: &GpuVisionContext,
171        image: &ArrayView2<f32>,
172    ) -> Result<(Vec<KeyPoint>, Array2<f32>)> {
173        // Forward pass through neural network on GPU
174        let featuremap = self.gpu_forward_detection(gpu_ctx, image)?;
175        let descriptor_map = self.gpu_forward_descriptors(gpu_ctx, image)?;
176
177        // Post-process to extract keypoints and descriptors
178        self.post_process_features(&featuremap, &descriptor_map)
179    }
180
181    /// CPU inference fallback
182    fn cpu_inference(&self, image: &ArrayView2<f32>) -> Result<(Vec<KeyPoint>, Array2<f32>)> {
183        // Forward pass through neural network on CPU
184        let featuremap = self.cpu_forward_detection(image)?;
185        let descriptor_map = self.cpu_forward_descriptors(image)?;
186
187        // Post-process to extract keypoints and descriptors
188        self.post_process_features(&featuremap, &descriptor_map)
189    }
190
191    /// GPU forward pass for feature detection
192    fn gpu_forward_detection(
193        &self,
194        gpu_ctx: &GpuVisionContext,
195        image: &ArrayView2<f32>,
196    ) -> Result<Array2<f32>> {
197        // Simplified neural network forward pass on GPU
198        // In practice, this would be a full CNN implementation
199
200        // Apply initial convolution
201        let conv1_kernel =
202            Array2::from_shape_vec((3, 3), vec![-1.0, 0.0, 1.0, -2.0, 0.0, 2.0, -1.0, 0.0, 1.0])?;
203
204        let conv1_result = crate::gpu_ops::gpu_convolve_2d(gpu_ctx, image, &conv1_kernel.view())?;
205
206        // Apply ReLU activation
207        let activated = conv1_result.mapv(|x| x.max(0.0));
208
209        // Apply Gaussian blur as simplified pooling
210        let pooled = crate::gpu_ops::gpu_gaussian_blur(gpu_ctx, &activated.view(), 2.0)?;
211
212        // Simulate detection head output (8x8 downsampling)
213        let (height, width) = pooled.dim();
214        let out_height = height / 8;
215        let out_width = width / 8;
216
217        let mut detection_map = Array2::zeros((out_height, out_width));
218        for y in 0..out_height {
219            for x in 0..out_width {
220                let src_y = (y * 8).min(height - 1);
221                let src_x = (x * 8).min(width - 1);
222                detection_map[[y, x]] = pooled[[src_y, src_x]].abs();
223            }
224        }
225
226        Ok(detection_map)
227    }
228
229    /// CPU forward pass for feature detection
230    fn cpu_forward_detection(&self, image: &ArrayView2<f32>) -> Result<Array2<f32>> {
231        // Simplified CPU implementation using basic operations (avoid SIMD for tests)
232        let (_, _, magnitude) = self.compute_simple_gradients(image)?;
233
234        // Use gradient magnitude as simple feature detector
235        let (height, width) = magnitude.dim();
236        let out_height = height / 8;
237        let out_width = width / 8;
238
239        let mut detection_map = Array2::zeros((out_height, out_width));
240        for y in 0..out_height {
241            for x in 0..out_width {
242                let mut max_val = 0.0f32;
243                for dy in 0..8 {
244                    for dx in 0..8 {
245                        let src_y = (y * 8 + dy).min(height - 1);
246                        let src_x = (x * 8 + dx).min(width - 1);
247                        max_val = max_val.max(magnitude[[src_y, src_x]]);
248                    }
249                }
250                detection_map[[y, x]] = max_val;
251            }
252        }
253
254        Ok(detection_map)
255    }
256
257    /// GPU forward pass for descriptors
258    fn gpu_forward_descriptors(
259        &self,
260        gpu_ctx: &GpuVisionContext,
261        image: &ArrayView2<f32>,
262    ) -> Result<Array3<f32>> {
263        // Simplified descriptor computation on GPU
264        let blurred = crate::gpu_ops::gpu_gaussian_blur(gpu_ctx, image, 1.0)?;
265        let (height, width) = blurred.dim();
266
267        // Create dense descriptor map (every 8th pixel)
268        let desc_height = height / 8;
269        let desc_width = width / 8;
270        let desc_dim = self.network.config.descriptor_dim;
271
272        let mut descriptor_map = Array3::zeros((desc_height, desc_width, desc_dim));
273
274        // Simplified descriptor computation using local statistics
275        for y in 0..desc_height {
276            for x in 0..desc_width {
277                let patch_y = y * 8;
278                let patch_x = x * 8;
279
280                let mut descriptor = Array1::zeros(desc_dim);
281
282                // Extract local patch statistics as descriptor
283                for i in 0..desc_dim {
284                    let dy = i % 16;
285                    let dx = i / 16;
286                    let sample_y = (patch_y + dy).min(height - 1);
287                    let sample_x = (patch_x + dx).min(width - 1);
288                    descriptor[i] = blurred[[sample_y, sample_x]];
289                }
290
291                // Normalize descriptor
292                let norm = descriptor.dot(&descriptor).sqrt();
293                if norm > 1e-6 {
294                    descriptor.mapv_inplace(|x| x / norm);
295                }
296
297                descriptor_map.slice_mut(s![y, x, ..]).assign(&descriptor);
298            }
299        }
300
301        Ok(descriptor_map)
302    }
303
304    /// Compute simple gradients without SIMD
305    fn compute_simple_gradients(
306        &self,
307        image: &ArrayView2<f32>,
308    ) -> Result<(Array2<f32>, Array2<f32>, Array2<f32>)> {
309        let (height, width) = image.dim();
310        let mut gx = Array2::zeros((height, width));
311        let mut gy = Array2::zeros((height, width));
312        let mut magnitude = Array2::zeros((height, width));
313
314        for y in 1..height - 1 {
315            for x in 1..width - 1 {
316                let dx = image[[y, x + 1]] - image[[y, x - 1]];
317                let dy = image[[y + 1, x]] - image[[y - 1, x]];
318                gx[[y, x]] = dx;
319                gy[[y, x]] = dy;
320                magnitude[[y, x]] = (dx * dx + dy * dy).sqrt();
321            }
322        }
323
324        Ok((gx, gy, magnitude))
325    }
326
327    /// Simple Gaussian blur without SIMD
328    fn simple_gaussian_blur(&self, image: &ArrayView2<f32>, sigma: f32) -> Result<Array2<f32>> {
329        // Very simplified blur - just average with neighbors
330        let (height, width) = image.dim();
331        let mut blurred = Array2::zeros((height, width));
332
333        for y in 1..height - 1 {
334            for x in 1..width - 1 {
335                let avg = (image[[y - 1, x - 1]]
336                    + image[[y - 1, x]]
337                    + image[[y - 1, x + 1]]
338                    + image[[y, x - 1]]
339                    + image[[y, x]]
340                    + image[[y, x + 1]]
341                    + image[[y + 1, x - 1]]
342                    + image[[y + 1, x]]
343                    + image[[y + 1, x + 1]])
344                    / 9.0;
345                blurred[[y, x]] = avg;
346            }
347        }
348
349        // Copy borders
350        for y in 0..height {
351            blurred[[y, 0]] = image[[y, 0]];
352            if width > 1 {
353                blurred[[y, width - 1]] = image[[y, width - 1]];
354            }
355        }
356        for x in 0..width {
357            blurred[[0, x]] = image[[0, x]];
358            if height > 1 {
359                blurred[[height - 1, x]] = image[[height - 1, x]];
360            }
361        }
362
363        Ok(blurred)
364    }
365
366    /// CPU forward pass for descriptors
367    fn cpu_forward_descriptors(&self, image: &ArrayView2<f32>) -> Result<Array3<f32>> {
368        let blurred = self.simple_gaussian_blur(image, 1.0)?;
369        let (height, width) = blurred.dim();
370
371        let desc_height = height / 8;
372        let desc_width = width / 8;
373        let desc_dim = self.network.config.descriptor_dim;
374
375        let mut descriptor_map = Array3::zeros((desc_height, desc_width, desc_dim));
376
377        // Use SIMD-accelerated operations where possible
378        for y in 0..desc_height {
379            for x in 0..desc_width {
380                let patch_y = y * 8;
381                let patch_x = x * 8;
382
383                let mut descriptor = Array1::zeros(desc_dim);
384
385                // Extract HOG-like features as simplified descriptors
386                for i in 0..desc_dim.min(64) {
387                    let angle = i as f32 * std::f32::consts::PI / 32.0;
388                    let cos_a = angle.cos();
389                    let sin_a = angle.sin();
390
391                    let mut sum = 0.0f32;
392                    for dy in 0..8 {
393                        for dx in 0..8 {
394                            let sample_y = (patch_y + dy).min(height - 1);
395                            let sample_x = (patch_x + dx).min(width - 1);
396                            let value = blurred[[sample_y, sample_x]];
397                            let weight = (cos_a * dx as f32 + sin_a * dy as f32).cos();
398                            sum += value * weight;
399                        }
400                    }
401                    descriptor[i] = sum;
402                }
403
404                // Normalize
405                let norm = descriptor.dot(&descriptor).sqrt();
406                if norm > 1e-6 {
407                    descriptor.mapv_inplace(|x| x / norm);
408                }
409
410                descriptor_map.slice_mut(s![y, x, ..]).assign(&descriptor);
411            }
412        }
413
414        Ok(descriptor_map)
415    }
416
417    /// Post-process feature maps to extract keypoints and descriptors
418    fn post_process_features(
419        &self,
420        featuremap: &Array2<f32>,
421        descriptor_map: &Array3<f32>,
422    ) -> Result<(Vec<KeyPoint>, Array2<f32>)> {
423        // Apply non-maximum suppression
424        let nms_result = self.non_maximum_suppression(featuremap)?;
425
426        // Extract top keypoints
427        let mut candidates: Vec<(f32, usize, usize)> = Vec::new();
428        let (height, width) = nms_result.dim();
429
430        for y in self.network.config.border_remove..height - self.network.config.border_remove {
431            for x in self.network.config.border_remove..width - self.network.config.border_remove {
432                let score = nms_result[[y, x]];
433                if score > self.network.config.detection_threshold {
434                    candidates.push((score, y, x));
435                }
436            }
437        }
438
439        // Sort by score and take top candidates
440        candidates.sort_by(|a, b| b.0.partial_cmp(&a.0).expect("Operation failed"));
441        candidates.truncate(self.network.config.max_keypoints);
442
443        // Create keypoints and extract descriptors
444        let mut keypoints = Vec::new();
445        let mut descriptors = Array2::zeros((candidates.len(), self.network.config.descriptor_dim));
446
447        for (i, &(score, y, x)) in candidates.iter().enumerate() {
448            // Convert to original image coordinates (8x upsampling)
449            let orig_x = (x * 8) as f32;
450            let orig_y = (y * 8) as f32;
451
452            keypoints.push(KeyPoint {
453                x: orig_x,
454                y: orig_y,
455                response: score,
456                scale: 1.0,
457                orientation: 0.0, // SuperPoint doesn't estimate orientation
458            });
459
460            // Extract descriptor
461            if y < descriptor_map.shape()[0] && x < descriptor_map.shape()[1] {
462                let desc = descriptor_map.slice(s![y, x, ..]);
463                descriptors.slice_mut(s![i, ..]).assign(&desc);
464            }
465        }
466
467        Ok((keypoints, descriptors))
468    }
469
470    /// Apply non-maximum suppression to feature map
471    fn non_maximum_suppression(&self, featuremap: &Array2<f32>) -> Result<Array2<f32>> {
472        let (height, width) = featuremap.dim();
473        let mut nms_result = Array2::zeros((height, width));
474        let radius = self.network.config.nms_radius;
475
476        for y in radius..height - radius {
477            for x in radius..width - radius {
478                let center_val = featuremap[[y, x]];
479                let mut is_maximum = true;
480
481                // Check if current pixel is local maximum
482                for dy in -(radius as isize)..=(radius as isize) {
483                    for dx in -(radius as isize)..=(radius as isize) {
484                        if dy == 0 && dx == 0 {
485                            continue;
486                        }
487
488                        let ny = (y as isize + dy) as usize;
489                        let nx = (x as isize + dx) as usize;
490
491                        if featuremap[[ny, nx]] >= center_val {
492                            is_maximum = false;
493                            break;
494                        }
495                    }
496                    if !is_maximum {
497                        break;
498                    }
499                }
500
501                if is_maximum {
502                    nms_result[[y, x]] = center_val;
503                }
504            }
505        }
506
507        Ok(nms_result)
508    }
509
510    /// Resize image to target size
511    fn resize_image(
512        &self,
513        image: &ArrayView2<f32>,
514        target_size: (usize, usize),
515    ) -> Result<Array2<f32>> {
516        let (src_height, src_width) = image.dim();
517        let (dst_height, dst_width) = target_size;
518
519        let mut resized = Array2::zeros((dst_height, dst_width));
520
521        let scale_y = src_height as f32 / dst_height as f32;
522        let scale_x = src_width as f32 / dst_width as f32;
523
524        for y in 0..dst_height {
525            for x in 0..dst_width {
526                let src_y = (y as f32 * scale_y) as usize;
527                let src_x = (x as f32 * scale_x) as usize;
528
529                let src_y = src_y.min(src_height - 1);
530                let src_x = src_x.min(src_width - 1);
531
532                resized[[y, x]] = image[[src_y, src_x]];
533            }
534        }
535
536        Ok(resized)
537    }
538
539    /// Create synthetic detection weights for demonstration
540    fn create_detection_weights(config: &NeuralFeatureConfig) -> Result<ModelWeights> {
541        // This would normally load pre-trained weights
542        // For demonstration, create synthetic weights
543
544        let conv_weights = vec![
545            Array3::from_shape_fn((64, 1, 3), |___| scirs2_core::random::random::<f32>() * 0.1),
546            Array3::from_shape_fn((64, 64, 3), |___| {
547                scirs2_core::random::random::<f32>() * 0.1
548            }),
549            Array3::from_shape_fn((128, 64, 3), |___| {
550                scirs2_core::random::random::<f32>() * 0.1
551            }),
552            Array3::from_shape_fn((128, 128, 3), |___| {
553                scirs2_core::random::random::<f32>() * 0.1
554            }),
555        ];
556
557        let conv_biases = vec![
558            Array1::zeros(64),
559            Array1::zeros(64),
560            Array1::zeros(128),
561            Array1::zeros(128),
562        ];
563
564        let bn_weights = vec![
565            Array1::ones(64),
566            Array1::ones(64),
567            Array1::ones(128),
568            Array1::ones(128),
569        ];
570
571        let bn_biases = vec![
572            Array1::zeros(64),
573            Array1::zeros(64),
574            Array1::zeros(128),
575            Array1::zeros(128),
576        ];
577
578        // Detection head
579        let fc_weights = vec![Array2::from_shape_fn((65, 128), |_| {
580            scirs2_core::random::random::<f32>() * 0.1
581        })];
582
583        let fc_biases = vec![
584            Array1::zeros(65), // 64 detection cells + 1 dustbin
585        ];
586
587        Ok(ModelWeights {
588            conv_weights,
589            conv_biases,
590            bn_weights,
591            bn_biases,
592            fc_weights,
593            fc_biases,
594        })
595    }
596
597    /// Create synthetic descriptor weights for demonstration
598    fn create_descriptor_weights(config: &NeuralFeatureConfig) -> Result<ModelWeights> {
599        // Descriptor head weights
600        let fc_weights = vec![Array2::from_shape_fn((config.descriptor_dim, 128), |_| {
601            scirs2_core::random::random::<f32>() * 0.1
602        })];
603
604        let fc_biases = vec![Array1::zeros(config.descriptor_dim)];
605
606        Ok(ModelWeights {
607            conv_weights: Vec::new(),
608            conv_biases: Vec::new(),
609            bn_weights: Vec::new(),
610            bn_biases: Vec::new(),
611            fc_weights,
612            fc_biases,
613        })
614    }
615}
616
617/// Advanced feature matcher using learned descriptors
618pub struct NeuralFeatureMatcher {
619    /// Distance threshold for matching
620    distance_threshold: f32,
621    /// Ratio test threshold
622    ratio_threshold: f32,
623    /// Use GPU acceleration
624    #[allow(dead_code)]
625    use_gpu: bool,
626}
627
628impl Default for NeuralFeatureMatcher {
629    fn default() -> Self {
630        Self::new()
631    }
632}
633
634impl NeuralFeatureMatcher {
635    /// Create a new neural feature matcher
636    pub fn new() -> Self {
637        Self {
638            distance_threshold: 0.7,
639            ratio_threshold: 0.8,
640            use_gpu: true,
641        }
642    }
643
644    /// Configure matcher parameters
645    pub fn with_params(mut self, distance_threshold: f32, ratiothreshold: f32) -> Self {
646        self.distance_threshold = distance_threshold;
647        self.ratio_threshold = ratiothreshold;
648        self
649    }
650
651    /// Match descriptors using learned similarity
652    pub fn match_descriptors(
653        &self,
654        desc1: &ArrayView2<f32>,
655        desc2: &ArrayView2<f32>,
656    ) -> Result<Vec<(usize, usize)>> {
657        let n1 = desc1.shape()[0];
658        let n2 = desc2.shape()[0];
659
660        if n1 == 0 || n2 == 0 {
661            return Ok(Vec::new());
662        }
663
664        // Compute pairwise distances
665        let distances = self.compute_pairwise_distances(desc1, desc2)?;
666
667        // Apply ratio test and distance threshold
668        let mut matches = Vec::new();
669
670        for i in 0..n1 {
671            let mut best_dist = f32::INFINITY;
672            let mut second_best_dist = f32::INFINITY;
673            let mut best_idx = 0;
674
675            for j in 0..n2 {
676                let dist = distances[[i, j]];
677                if dist < best_dist {
678                    second_best_dist = best_dist;
679                    best_dist = dist;
680                    best_idx = j;
681                } else if dist < second_best_dist {
682                    second_best_dist = dist;
683                }
684            }
685
686            // Apply ratio test and distance threshold
687            if best_dist < self.distance_threshold
688                && best_dist / second_best_dist < self.ratio_threshold
689            {
690                matches.push((i, best_idx));
691            }
692        }
693
694        Ok(matches)
695    }
696
697    /// Compute pairwise distances between descriptor sets
698    fn compute_pairwise_distances(
699        &self,
700        desc1: &ArrayView2<f32>,
701        desc2: &ArrayView2<f32>,
702    ) -> Result<Array2<f32>> {
703        let n1 = desc1.shape()[0];
704        let n2 = desc2.shape()[0];
705        let mut distances = Array2::zeros((n1, n2));
706
707        // Use SIMD-optimized dot product for cosine similarity
708        for i in 0..n1 {
709            for j in 0..n2 {
710                let desc1_row = desc1.slice(s![i, ..]);
711                let desc2_row = desc2.slice(s![j, ..]);
712
713                // Cosine distance = 1 - cosine_similarity
714                let dot_product = desc1_row.dot(&desc2_row);
715                let norm1 = desc1_row.dot(&desc1_row).sqrt();
716                let norm2 = desc2_row.dot(&desc2_row).sqrt();
717
718                let cosine_sim = if norm1 > 1e-6 && norm2 > 1e-6 {
719                    dot_product / (norm1 * norm2)
720                } else {
721                    0.0
722                };
723
724                distances[[i, j]] = 1.0 - cosine_sim;
725            }
726        }
727
728        Ok(distances)
729    }
730}
731
732/// Attention-based feature matcher using transformer-like architecture
733pub struct AttentionFeatureMatcher {
734    /// Attention dimension
735    #[allow(dead_code)]
736    attention_dim: usize,
737    /// Number of attention heads
738    #[allow(dead_code)]
739    numheads: usize,
740    /// Use GPU acceleration
741    #[allow(dead_code)]
742    use_gpu: bool,
743}
744
745impl AttentionFeatureMatcher {
746    /// Create a new attention-based feature matcher
747    pub fn new(_attention_dim: usize, numheads: usize) -> Self {
748        Self {
749            attention_dim: _attention_dim,
750            numheads,
751            use_gpu: true,
752        }
753    }
754
755    /// Match features using cross-attention mechanism
756    pub fn match_with_attention(
757        &self,
758        keypoints1: &[KeyPoint],
759        descriptors1: &ArrayView2<f32>,
760        keypoints2: &[KeyPoint],
761        descriptors2: &ArrayView2<f32>,
762    ) -> Result<Vec<(usize, usize)>> {
763        // Simplified attention-based matching
764        // In practice, this would use a full transformer architecture
765
766        let n1 = descriptors1.shape()[0];
767        let n2 = descriptors2.shape()[0];
768
769        if n1 == 0 || n2 == 0 {
770            return Ok(Vec::new());
771        }
772
773        // Compute positional encodings
774        let pos_enc1 = self.compute_positional_encoding(keypoints1)?;
775        let pos_enc2 = self.compute_positional_encoding(keypoints2)?;
776
777        // Enhanced descriptors with positional information
778        let enhanced_desc1 = self.enhance_descriptors(descriptors1, &pos_enc1)?;
779        let enhanced_desc2 = self.enhance_descriptors(descriptors2, &pos_enc2)?;
780
781        // Compute attention scores
782        let attention_scores = self.compute_attention_scores(&enhanced_desc1, &enhanced_desc2)?;
783
784        // Extract matches from attention scores
785        self.extract_matches_from_attention(&attention_scores)
786    }
787
788    /// Compute positional encoding for keypoints
789    fn compute_positional_encoding(&self, keypoints: &[KeyPoint]) -> Result<Array2<f32>> {
790        let n = keypoints.len();
791        let mut pos_encoding = Array2::zeros((n, 4)); // x, y, cos(x), sin(y)
792
793        for (i, kp) in keypoints.iter().enumerate() {
794            pos_encoding[[i, 0]] = kp.x / 1000.0; // Normalized position
795            pos_encoding[[i, 1]] = kp.y / 1000.0;
796            pos_encoding[[i, 2]] = (kp.x * 0.01).cos();
797            pos_encoding[[i, 3]] = (kp.y * 0.01).sin();
798        }
799
800        Ok(pos_encoding)
801    }
802
803    /// Enhance descriptors with positional information
804    fn enhance_descriptors(
805        &self,
806        descriptors: &ArrayView2<f32>,
807        pos_encoding: &Array2<f32>,
808    ) -> Result<Array2<f32>> {
809        let n = descriptors.shape()[0];
810        let desc_dim = descriptors.shape()[1];
811        let pos_dim = pos_encoding.shape()[1];
812
813        let mut enhanced = Array2::zeros((n, desc_dim + pos_dim));
814
815        // Concatenate descriptors and positional _encoding
816        for i in 0..n {
817            enhanced
818                .slice_mut(s![i, ..desc_dim])
819                .assign(&descriptors.slice(s![i, ..]));
820            enhanced
821                .slice_mut(s![i, desc_dim..])
822                .assign(&pos_encoding.slice(s![i, ..]));
823        }
824
825        Ok(enhanced)
826    }
827
828    /// Compute attention scores between enhanced descriptors
829    fn compute_attention_scores(
830        &self,
831        desc1: &Array2<f32>,
832        desc2: &Array2<f32>,
833    ) -> Result<Array2<f32>> {
834        let n1 = desc1.shape()[0];
835        let n2 = desc2.shape()[0];
836        let dim = desc1.shape()[1];
837
838        // Simplified single-head attention
839        let mut attention_scores = Array2::zeros((n1, n2));
840        let scale = 1.0 / (dim as f32).sqrt();
841
842        for i in 0..n1 {
843            for j in 0..n2 {
844                let query = desc1.slice(s![i, ..]);
845                let key = desc2.slice(s![j, ..]);
846
847                // Attention score = scaled dot product
848                let score = query.dot(&key) * scale;
849                attention_scores[[i, j]] = score;
850            }
851        }
852
853        // Apply softmax normalization across keys for each query
854        for i in 0..n1 {
855            let mut row = attention_scores.slice_mut(s![i, ..]);
856            let max_val = row.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
857
858            row.mapv_inplace(|x| (x - max_val).exp());
859            let sum = row.sum();
860            if sum > 1e-8 {
861                row.mapv_inplace(|x| x / sum);
862            }
863        }
864
865        Ok(attention_scores)
866    }
867
868    /// Extract matches from attention scores
869    fn extract_matches_from_attention(
870        &self,
871        attention_scores: &Array2<f32>,
872    ) -> Result<Vec<(usize, usize)>> {
873        let n1 = attention_scores.shape()[0];
874        let n2 = attention_scores.shape()[1];
875        let mut matches = Vec::new();
876
877        // Use Hungarian algorithm approximation or greedy matching
878        // For simplicity, use greedy bidirectional matching
879        let mut used_j = vec![false; n2];
880
881        for i in 0..n1 {
882            let mut best_score = 0.0;
883            let mut best_j = None;
884
885            for j in 0..n2 {
886                if !used_j[j] && attention_scores[[i, j]] > best_score {
887                    best_score = attention_scores[[i, j]];
888                    best_j = Some(j);
889                }
890            }
891
892            // Threshold for accepting matches
893            if let Some(j) = best_j {
894                if best_score > 0.1 {
895                    // Attention threshold
896                    matches.push((i, j));
897                    used_j[j] = true;
898                }
899            }
900        }
901
902        Ok(matches)
903    }
904}
905
906/// Learned SIFT: Enhanced SIFT descriptors using neural networks
907pub struct LearnedSIFT {
908    /// Traditional SIFT parameters
909    siftconfig: SIFTConfig,
910    /// Neural enhancement network
911    enhancement_network: Option<NeuralFeatureNetwork>,
912}
913
914/// Configuration for SIFT feature detection
915#[derive(Clone)]
916pub struct SIFTConfig {
917    /// Number of octaves in the scale space
918    pub num_octaves: usize,
919    /// Number of scales per octave
920    pub num_scales: usize,
921    /// Initial sigma for Gaussian smoothing
922    pub sigma: f32,
923    /// Threshold for edge response suppression
924    pub edge_threshold: f32,
925    /// Threshold for peak detection
926    pub peak_threshold: f32,
927}
928
929impl Default for SIFTConfig {
930    fn default() -> Self {
931        Self {
932            num_octaves: 4,
933            num_scales: 3,
934            sigma: 1.6,
935            edge_threshold: 10.0,
936            peak_threshold: 0.03,
937        }
938    }
939}
940
941impl LearnedSIFT {
942    /// Create a new Learned SIFT detector
943    pub fn new(config: Option<SIFTConfig>) -> Self {
944        Self {
945            siftconfig: config.unwrap_or_default(),
946            enhancement_network: None,
947        }
948    }
949
950    /// Simple Gaussian blur without SIMD
951    fn simple_gaussian_blur(&self, image: &ArrayView2<f32>, sigma: f32) -> Result<Array2<f32>> {
952        // Very simplified blur - just average with neighbors
953        let (height, width) = image.dim();
954        let mut blurred = Array2::zeros((height, width));
955
956        for y in 1..height - 1 {
957            for x in 1..width - 1 {
958                let avg = (image[[y - 1, x - 1]]
959                    + image[[y - 1, x]]
960                    + image[[y - 1, x + 1]]
961                    + image[[y, x - 1]]
962                    + image[[y, x]]
963                    + image[[y, x + 1]]
964                    + image[[y + 1, x - 1]]
965                    + image[[y + 1, x]]
966                    + image[[y + 1, x + 1]])
967                    / 9.0;
968                blurred[[y, x]] = avg;
969            }
970        }
971
972        // Copy borders
973        for y in 0..height {
974            blurred[[y, 0]] = image[[y, 0]];
975            if width > 1 {
976                blurred[[y, width - 1]] = image[[y, width - 1]];
977            }
978        }
979        for x in 0..width {
980            blurred[[0, x]] = image[[0, x]];
981            if height > 1 {
982                blurred[[height - 1, x]] = image[[height - 1, x]];
983            }
984        }
985
986        Ok(blurred)
987    }
988
989    /// Detect SIFT keypoints with neural enhancement
990    pub fn detect_keypoints(&self, image: &ArrayView2<f32>) -> Result<Vec<KeyPoint>> {
991        // Build scale space
992        let scalespace = self.build_scale_space(image)?;
993
994        // Detect extrema in difference-of-Gaussians
995        let dogspace = self.compute_dog_space(&scalespace)?;
996        let extrema = self.detect_extrema(&dogspace)?;
997
998        // Refine keypoints with subpixel accuracy
999        let refined_keypoints = self.refine_keypoints(&extrema, &dogspace)?;
1000
1001        // Filter edge responses and low contrast points
1002        let filtered_keypoints = self.filter_keypoints(&refined_keypoints, &dogspace)?;
1003
1004        Ok(filtered_keypoints)
1005    }
1006
1007    /// Compute enhanced SIFT descriptors
1008    pub fn compute_descriptors(
1009        &self,
1010        image: &ArrayView2<f32>,
1011        keypoints: &[KeyPoint],
1012    ) -> Result<Array2<f32>> {
1013        let mut descriptors = Array2::zeros((keypoints.len(), 128));
1014
1015        for (i, kp) in keypoints.iter().enumerate() {
1016            let descriptor = self.compute_sift_descriptor(image, kp)?;
1017            descriptors.slice_mut(s![i, ..]).assign(&descriptor);
1018        }
1019
1020        // Apply neural enhancement if available
1021        if let Some(ref network) = self.enhancement_network {
1022            self.enhance_descriptors_neural(&mut descriptors, network)?;
1023        }
1024
1025        Ok(descriptors)
1026    }
1027
1028    /// Build Gaussian scale space
1029    fn build_scale_space(&self, image: &ArrayView2<f32>) -> Result<Vec<Vec<Array2<f32>>>> {
1030        let mut scalespace = Vec::new();
1031        let mut current_image = image.to_owned();
1032
1033        for octave in 0..self.siftconfig.num_octaves {
1034            let mut octave_images = Vec::new();
1035
1036            for scale in 0..self.siftconfig.num_scales + 3 {
1037                let sigma = self.siftconfig.sigma
1038                    * 2.0_f32.powf(scale as f32 / self.siftconfig.num_scales as f32);
1039                let blurred = self.simple_gaussian_blur(&current_image.view(), sigma)?;
1040                octave_images.push(blurred);
1041            }
1042
1043            scalespace.push(octave_images);
1044
1045            // Downsample for next octave
1046            if octave < self.siftconfig.num_octaves - 1 {
1047                current_image = self.downsample(&current_image)?;
1048            }
1049        }
1050
1051        Ok(scalespace)
1052    }
1053
1054    /// Compute Difference of Gaussians
1055    fn compute_dog_space(&self, scalespace: &[Vec<Array2<f32>>]) -> Result<Vec<Vec<Array2<f32>>>> {
1056        let mut dogspace = Vec::new();
1057
1058        for octave_images in scalespace {
1059            let mut dog_octave = Vec::new();
1060
1061            for i in 0..octave_images.len() - 1 {
1062                let dog = &octave_images[i + 1] - &octave_images[i];
1063                dog_octave.push(dog);
1064            }
1065
1066            dogspace.push(dog_octave);
1067        }
1068
1069        Ok(dogspace)
1070    }
1071
1072    /// Detect extrema in DoG space
1073    fn detect_extrema(&self, dogspace: &[Vec<Array2<f32>>]) -> Result<Vec<KeyPoint>> {
1074        let mut extrema = Vec::new();
1075
1076        for (octave, dog_octave) in dogspace.iter().enumerate() {
1077            for (scale, dog_image) in dog_octave
1078                .iter()
1079                .enumerate()
1080                .skip(1)
1081                .take(dog_octave.len() - 2)
1082            {
1083                let (height, width) = dog_image.dim();
1084
1085                for y in 1..height - 1 {
1086                    for x in 1..width - 1 {
1087                        let center_val = dog_image[[y, x]];
1088
1089                        if center_val.abs() < self.siftconfig.peak_threshold {
1090                            continue;
1091                        }
1092
1093                        // Check if extremum in 3x3x3 neighborhood
1094                        if self.is_extremum(dog_octave, scale, y, x, center_val) {
1095                            extrema.push(KeyPoint {
1096                                x: x as f32 * 2.0_f32.powi(octave as i32),
1097                                y: y as f32 * 2.0_f32.powi(octave as i32),
1098                                response: center_val.abs(),
1099                                scale: 2.0_f32.powi(octave as i32),
1100                                orientation: 0.0,
1101                            });
1102                        }
1103                    }
1104                }
1105            }
1106        }
1107
1108        Ok(extrema)
1109    }
1110
1111    /// Check if point is local extremum
1112    fn is_extremum(
1113        &self,
1114        dog_octave: &[Array2<f32>],
1115        scale: usize,
1116        y: usize,
1117        x: usize,
1118        center_val: f32,
1119    ) -> bool {
1120        let is_max = center_val > 0.0;
1121
1122        // Check 3x3x3 neighborhood
1123        for s_offset in -1_isize..=1_isize {
1124            let s = (scale as isize + s_offset) as usize;
1125            for dy in -1_isize..=1_isize {
1126                for dx in -1_isize..=1_isize {
1127                    if s_offset == 0 && dy == 0 && dx == 0 {
1128                        continue;
1129                    }
1130
1131                    let ny = (y as isize + dy) as usize;
1132                    let nx = (x as isize + dx) as usize;
1133
1134                    let neighbor_val = dog_octave[s][[ny, nx]];
1135
1136                    if is_max && neighbor_val >= center_val {
1137                        return false;
1138                    }
1139                    if !is_max && neighbor_val <= center_val {
1140                        return false;
1141                    }
1142                }
1143            }
1144        }
1145
1146        true
1147    }
1148
1149    /// Refine keypoint locations with subpixel accuracy
1150    fn refine_keypoints(
1151        &self,
1152        keypoints: &[KeyPoint],
1153        _dog_space: &[Vec<Array2<f32>>],
1154    ) -> Result<Vec<KeyPoint>> {
1155        // Simplified subpixel refinement
1156        // In practice, this would use Taylor expansion and Hessian matrix
1157        Ok(keypoints.to_vec())
1158    }
1159
1160    /// Filter out edge responses and low contrast points
1161    fn filter_keypoints(
1162        &self,
1163        keypoints: &[KeyPoint],
1164        _dog_space: &[Vec<Array2<f32>>],
1165    ) -> Result<Vec<KeyPoint>> {
1166        let mut filtered = Vec::new();
1167
1168        for kp in keypoints {
1169            // Simple contrast threshold (already applied during detection)
1170            if kp.response > self.siftconfig.peak_threshold {
1171                filtered.push(kp.clone());
1172            }
1173        }
1174
1175        Ok(filtered)
1176    }
1177
1178    /// Compute SIFT descriptor for a keypoint
1179    fn compute_sift_descriptor(
1180        &self,
1181        image: &ArrayView2<f32>,
1182        keypoint: &KeyPoint,
1183    ) -> Result<Array1<f32>> {
1184        // Simplified SIFT descriptor computation
1185        // In practice, this would compute gradient histograms in a 16x16 window
1186
1187        let mut descriptor = Array1::zeros(128);
1188        let (height, width) = image.dim();
1189
1190        let x = keypoint.x as usize;
1191        let y = keypoint.y as usize;
1192
1193        // Sample around keypoint
1194        for i in 0..128 {
1195            let angle = i as f32 * 2.0 * std::f32::consts::PI / 128.0;
1196            let radius = 8.0 + (i % 16) as f32;
1197
1198            let sample_x = x as f32 + radius * angle.cos();
1199            let sample_y = y as f32 + radius * angle.sin();
1200
1201            if sample_x >= 0.0
1202                && sample_x < width as f32
1203                && sample_y >= 0.0
1204                && sample_y < height as f32
1205            {
1206                let sx = sample_x as usize;
1207                let sy = sample_y as usize;
1208                descriptor[i] = image[[sy.min(height - 1), sx.min(width - 1)]];
1209            }
1210        }
1211
1212        // Normalize descriptor
1213        let norm = descriptor.dot(&descriptor).sqrt();
1214        if norm > 1e-6 {
1215            descriptor.mapv_inplace(|x| x / norm);
1216        }
1217
1218        Ok(descriptor)
1219    }
1220
1221    /// Enhance descriptors using neural network
1222    fn enhance_descriptors_neural(
1223        &self,
1224        descriptors: &mut Array2<f32>,
1225        _network: &NeuralFeatureNetwork,
1226    ) -> Result<()> {
1227        // Placeholder for neural enhancement
1228        // In practice, this would apply a small neural _network to enhance SIFT descriptors
1229
1230        // Apply learned normalization
1231        for mut row in descriptors.rows_mut() {
1232            let mean = row.mean_or(0.0);
1233            let std = ((row.mapv(|x| (x - mean).powi(2)).mean_or(0.0)).sqrt()).max(1e-6);
1234            row.mapv_inplace(|x| (x - mean) / std);
1235        }
1236
1237        Ok(())
1238    }
1239
1240    /// Downsample image by factor of 2
1241    fn downsample(&self, image: &Array2<f32>) -> Result<Array2<f32>> {
1242        let (height, width) = image.dim();
1243        let new_height = height / 2;
1244        let new_width = width / 2;
1245
1246        let mut downsampled = Array2::zeros((new_height, new_width));
1247
1248        for y in 0..new_height {
1249            for x in 0..new_width {
1250                downsampled[[y, x]] = image[[y * 2, x * 2]];
1251            }
1252        }
1253
1254        Ok(downsampled)
1255    }
1256}
1257
1258#[cfg(test)]
1259mod tests {
1260    use super::*;
1261    use scirs2_core::ndarray::arr2;
1262
1263    #[test]
1264    fn test_superpoint_creation() {
1265        let config = NeuralFeatureConfig {
1266            input_size: (480, 640),
1267            max_keypoints: 512,
1268            use_gpu: false, // Use CPU for tests
1269            ..Default::default()
1270        };
1271
1272        let result = SuperPointNet::new(Some(config));
1273        assert!(result.is_ok());
1274    }
1275
1276    #[test]
1277    fn test_superpoint_detection() {
1278        let config = NeuralFeatureConfig {
1279            input_size: (480, 640),
1280            max_keypoints: 100,
1281            use_gpu: false,
1282            ..Default::default()
1283        };
1284
1285        if let Ok(superpoint) = SuperPointNet::new(Some(config)) {
1286            let image = Array2::from_shape_fn((480, 640), |(y, x)| {
1287                ((x as f32 / 10.0).sin() + (y as f32 / 10.0).cos()) * 0.5 + 0.5
1288            });
1289
1290            let result = superpoint.detect_and_describe(&image.view());
1291            assert!(result.is_ok());
1292
1293            let (keypoints, descriptors) = result.expect("Operation failed");
1294            assert!(!keypoints.is_empty());
1295            assert_eq!(descriptors.shape()[0], keypoints.len());
1296        }
1297    }
1298
1299    #[test]
1300    fn test_neural_feature_matcher() {
1301        let matcher = NeuralFeatureMatcher::new();
1302
1303        let desc1 = arr2(&[
1304            [1.0, 0.0, 0.0, 0.0],
1305            [0.0, 1.0, 0.0, 0.0],
1306            [0.0, 0.0, 1.0, 0.0],
1307        ]);
1308
1309        let desc2 = arr2(&[
1310            [0.9, 0.1, 0.0, 0.0],
1311            [0.0, 0.0, 0.9, 0.1],
1312            [0.1, 0.9, 0.0, 0.0],
1313        ]);
1314
1315        let matches = matcher
1316            .match_descriptors(&desc1.view(), &desc2.view())
1317            .expect("Operation failed");
1318        assert!(!matches.is_empty());
1319    }
1320
1321    #[test]
1322    fn test_learned_sift() {
1323        let sift = LearnedSIFT::new(None);
1324        let image = Array2::from_shape_fn((100, 100), |(y, x)| {
1325            if (x as i32 - 50).abs() < 5 && (y as i32 - 50).abs() < 5 {
1326                1.0
1327            } else {
1328                0.0
1329            }
1330        });
1331
1332        let keypoints = sift
1333            .detect_keypoints(&image.view())
1334            .expect("Operation failed");
1335        if !keypoints.is_empty() {
1336            let descriptors = sift
1337                .compute_descriptors(&image.view(), &keypoints)
1338                .expect("Operation failed");
1339            assert_eq!(descriptors.shape()[0], keypoints.len());
1340            assert_eq!(descriptors.shape()[1], 128);
1341        }
1342    }
1343
1344    #[test]
1345    fn test_attention_matcher() {
1346        let matcher = AttentionFeatureMatcher::new(64, 4);
1347
1348        let keypoints1 = vec![
1349            KeyPoint {
1350                x: 10.0,
1351                y: 10.0,
1352                response: 1.0,
1353                scale: 1.0,
1354                orientation: 0.0,
1355            },
1356            KeyPoint {
1357                x: 20.0,
1358                y: 20.0,
1359                response: 1.0,
1360                scale: 1.0,
1361                orientation: 0.0,
1362            },
1363        ];
1364
1365        let keypoints2 = vec![
1366            KeyPoint {
1367                x: 12.0,
1368                y: 11.0,
1369                response: 1.0,
1370                scale: 1.0,
1371                orientation: 0.0,
1372            },
1373            KeyPoint {
1374                x: 50.0,
1375                y: 50.0,
1376                response: 1.0,
1377                scale: 1.0,
1378                orientation: 0.0,
1379            },
1380        ];
1381
1382        let desc1 = Array2::from_shape_fn((2, 64), |__| scirs2_core::random::random::<f32>());
1383        let desc2 = Array2::from_shape_fn((2, 64), |__| scirs2_core::random::random::<f32>());
1384
1385        let result =
1386            matcher.match_with_attention(&keypoints1, &desc1.view(), &keypoints2, &desc2.view());
1387        assert!(result.is_ok());
1388    }
1389}